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Abstract 

A new information-theoretic approach is presented for finding the pose of an object in an image. 
The technique does not require information about the surface properties of the object, besides its 
shape, and is robust with respect to variations of illumination. In our derivation, few assumptions 
are made about the nature of the imaging process. As a result the algorithms are quite general and 

can foreseeably be used in a wide variety of imaging situations. 
Experiments are presented that demonstrate the approach registering magnetic resonance (MR) 

images with computed tomography (CT) images, aligning a complex 3D object model to real scenes 
including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 

2D object model to real images. 
The method is based on a formulation of the mutual information between the model and the 

image called EMMA. As applied here the technique is intensity-based, rather than feature-based. 
It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it 
is more robust than traditional correlation. Additionally, it has an efficient implementation that is 

based on stochastic approximation. 
Finally, we will describe a number of additional real-world applications that can be solved ef- 

ficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally 

informative projections of high-dimensional data. EMMA can also be used to detect and correct 

corruption in magnetic resonance images (MRI). 
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Abstract 

Over the last 30 years the problems of image registration and recognition have proven more 

difficult than even the most pessimistic might have predicted. Progress has been hampered by the 
sheer complexity of the relationship between an object and its image, which involves the object's 

shape, surface properties, position, and illumination. 
Changes in illumination can radically alter the intensity and shading of an image. Nevertheless, 

the human visual system can use shading both for recognition and image interpretation. We will 
present a measure for comparing objects and images that uses shading information, yet is explicitly 
insensitive to changes in illumination. This measure is unique in that it compares 3D object models 
directly to raw images. No pre-processing or edge detection is required. We will show that when the 
mutual information between model and image is large they are likely to be aligned. Toward making 
this technique a reality we have defined a concrete and efficient technique for evaluating entropy 

called EMMA. 
In our derivation of mutual information based alignment few assumptions are made about the 

nature of the imaging process. As a result the algorithms are quite general and can be used in a wide 

variety of imaging situations. Experiments demonstrate this approach aligning a number of complex 
3D object models to real images. In addition, we demonstrate that the same technique can be used 

to solve problems in medical registration. 
Alignment is accomplished by adjusting the pose of an object until the mutual information 

between image and object is maximized. We will present a gradient descent alignment procedure 
based on stochastic approximation that has a very efficient implementation. For this application 
stochastic approximation affords a speed up of at least a factor of 500 over gradient descent. In 
addition, stochastic approximation can be used to accelerate a variety of other vision applications. 
We will describe an existing vision application which can be accelerated by a factor of 30 using 

stochastic approximation. 
Finally, we will describe a number of additional real-world applications that can be solved ef- 

ficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally 
informative projections of high-dimensional data, EMMA can also be used to detect and correct 

corruption in magnetic resonance images (MRI). 
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Chapter 1 

Introduction 

This thesis is about a new information theoretic approach for solving several standing prob- 

lems in computer vision and image processing. For example, this approach can be used to 

find the correct alignment between a three dimensional model and an image. While align- 

ment is a critical component of the object recognition problem, it is also useful by itself in 

medical and military applications. We will also describe several other applications, including 

an image processing application and a new form of unsupervised learning. While the form 

of these applications is quite different the underlying theory and derivations are very similar. 

Preliminary investigation imply that the theory presented here will have wide application. 

Computer vision has proven more difficult than even the most pessimistic might have 

predicted. While the problem has been of interest for over 30 years, progress has been 

painstakingly slow. Even the best computer vision systems stand in stark contrast to the 

human visual system: our perception of images is effortless and robust; computer vision 

systems are at best slow and unreliable. Among other difficulties, progress has been hampered 

by the sheer complexity of the relationship between image and object, which involves the 

object's shape, surface properties, position, and illumination. 

A computer vision program is faced with the task of interpreting an image of intensities. 

While information about the shape and location of objects is somehow embedded in these 

intensities, the actual intensities that arise in an image are difficult to interpret. For example, 

changes in illumination can radically alter the intensity and shading of an image.  Though 
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the human visual system can use shading both for recognition and image interpretation, 

most existing computer object recognition systems cannot. These systems throw out shading 

information in an effort to obtain "illumination invariance". We will present a measure for 

comparing objects and images that uses shading information, yet is explicitly insensitive to 

changes in illumination. This measure is unique in that it compares 3D object models directly 

to raw images. No pre-processing or edge detection is required. 

This image/model comparison measure has been rigorously derived from information 

theory. Both the theory and algorithms involved are new, and are based on a efficient 

scheme for evaluating mutual information called EMMA1. The derivation of the the alignment 

procedure requires few assumptions about the nature of the imaging process. As a result 

the algorithms are quite general and can be used in a wide variety of imaging situations. 

Experiments demonstrate that this approach can align a number of complex 3D object models 

to real images. In addition, the same technique can be used to solve problems in medical 

registration. 

Alignment adjusts the pose of an object until the mutual information between image and 

object is maximized. Pose adjustment can be accomplished by ascending the gradient of 

mutual information. We will present an alignment procedure based on stochastic approxim- 

ation that affords a speed up of at least a factor of 500 over gradient ascent. In addition, 

stochastic approximation can be used to accelerate a variety of other vision applications. We 

will describe an existing vision application which can be accelerated by a factor of 30 using 

stochastic approximation. 

EMMA has also proven useful in a number of tasks beside alignment. For example, an 

entropy minimization framework that can be used to detect and correct corruption in magnetic 

resonance images (MRI). EMMA can also be used to define a new form of unsupervised 

learning. Unsupervised learning has been popularized in the neural network literature as a 

scheme for simplifying the representations of complex data. EMMA can be used to find low- 

dimensional projections of a high dimensional input space that are maximally informative. 

1EMMA is a, random but pronounceable subset, of the letters in the words "EMpirical entropy Manipulation 
and Analysis". 

10 
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1.1    An Introduction to Alignment 

The general problem of alignment entails comparing a predicted image of an object with an 

actual image. Given an object model and a pose (coordinate transformation), a model for 

the imaging process could be used to predict the image that will result. If we had a good 

imaging model then deciding whether an image contained a particular model at a given pose 

is straightforward: compute the predicted image and compare it to the actual image directly. 

Given a perfect imaging model the two images will be identical, or close to it. Of course 

finding the correct alignment is still a remaining challenge. 

The relationship between an object model (no matter how accurate) and the object's 

image is a complex one. The appearance of a small patch of a surface is a function of the 

surface properties, the patch's orientation, the position of the lights and the position of the 

observer. Given a model u(x) and an image v(y) we can formulate an imaging equation, 

v(T{x)) = F(u(x),q) (1.1) 

or equivalently, 

v(y) = F(u(T-\y)),q)  . (1.2) 

The imaging equation is separable into two distinct components. The first component is 

called a transformation, or pose, denoted T. It relates the coordinate frame of the model 

to the coordinate frame of the image. The transformation tells us which point in the model 

is responsible for a particular point in the image. The second component is the imaging 

function, F(u(x),q). The imaging function determines the value of image point v(T(x)). In 

general a pixel's value may be a function both of the model and other exogenous factors. For 

example an image of a three dimensional object depends not only on the object but also on 

the lighting. The parameter, q, collects all of the exogenous influences into a single vector. 

One reason that it is, in principle, possible to define F is that the image does convey 

information about the model. Clearly if there were no mutual information between u and v, 

there could be no meaningful F. We propose to finesse the problem of finding and computing 

F by dealing with this mutual information directly. We will present an algorithm that aligns 

by maximizing the mutual information between model and image. It requires no a priori 

model of the relationship between surface properties and scene intensities - it only assumes 

11 
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that the model tells more about the scene when it is correctly aligned. 

1.1.1    An Alignment Example 

One of the alignment problems that we will address involves finding the pose of a three- 

dimensional object that appears in a video image. This problem involves comparing two 

very different kinds of representations: a three-dimensional model of the shape of the object 

and a video image of that object. For example, Figure 1.1 contains a video image of an 

example object on the left and a depth map of that same object on the right (the object in 

question is a person's head: RON). A depth map is an image that displays the depth from 

the camera to every visible point on the object model. A depth map is a complete description 

of the shape of the object, at least the visible parts. 

From the depth map alone it might be difficult to see that the image and the model are 

aligned. The task can be made much easier, at least for us, if we simulate the imaging 

process and construct an image from the 3D model. Figure 1.2 contains two computer 

graphics renderings of the object model. These synthetic images are constructed assuming 

that the 3D model has a Lambertian surface and that the lighting comes from the right. It 

is almost immediately obvious that the model on the left is more closely aligned to the true 

image than the model on the right. Unfortunately, what we find trivial is very difficult for a 

computer. The intensities of the true video image and the synthetic images are very different. 

The true image and the correct model image are in fact uncorrelated. Yet any person can 

glance at these images and decide that both are images of a head and that both heads are 

looking in roughly the same direction. The human visual system is capable of ignoring the 

superficial differences that arise from changes in illumination and surface properties. 

It is not easy to build an automated alignment procedure that can make this kind of 

comparison. It is harder still to construct a system that can find the correct model pose. 

We have built such a system. That system selected the pose of the model shown at left in 

Figure 1.2. 

As mentioned above, the synthetic images of RON were generated under the assumption 

the model surface is Lambertian and the lighting is from the right. Lambert's law is perhaps 

the simplest model of surface reflectivity. It is an accurate model of the reflectance of a matte 

12 
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fc*l 

^V 

Figure 1.1: Two different views of R.ON. On the left is a video image. On the right is a 
depth map of a model of RON. A depth map describes the distance to each of the visible 
points of the model. White denotes points that are closer, black further. 

Figure 1.2: At left is a computer graphics rendering of a 3D model of RON. The position of 
the model is the same as the position of the actual head. At right is a rendering of the head 

model in an incorrect pose. 

or non-shiny surface. Lambert's law states that the visible intensity of a surface patch is 

related to the dot product between the surface normal and the lighting. For a Lambertian 

object the imaging equation is: 

,(T{x)) = Y,<*ih U(X] 1.3) 

where the model value u(x) is the normal vector of a surface patch on the object, /; is a 

vector pointing toward light source i, and Q; is proportional to the intensity of that light 

source ((Horn, 1986) contains an excellent review of imaging and its relationship to vision). 

13 
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Drawing the explicit parallel between (1.1) and (1.3) we can see that the imaging function is 

F(u(x),q) = Yiaifi-u{x)  , (1.4) 
i 

where q = {a;, /,;}. As the illumination changes the functional relationship between the model 

and image will change. 

Since we can not know beforehand what the imaging function will be, aligning a model and 

image can be quite difficult. These difficulties are only compounded if the surface properties of 

the object are not well understood. For example, many objects can not be modeled as having 

a Lambertian surface. Different surface finishes will have different reflectance functions. In 

general reflectance is a function of lighting direction, surface normal and viewing direction. 

The intensity of an observed patch is then: 

v(T{x)) = Y^R(aiJi,o,u(x))  , (1-5) 
i 

where 6 is a vector pointing toward the observer from the patch and R(-) is the reflectance 

function of the surface. For an unknown material a great deal of experimentation is neces- 

sary to completely categorize the reflectance function. Since a general vision system should 

work with a variety of objects and under general illumination conditions, overly constraining 

assumptions about reflectance or illumination should be avoided. 

Let us examine the relationship between a real image and model. This will allow us to 

build intuition about the alignment process. Data from the real reflectance function can 

be obtained by aligning a model to a real image. An alignment associates points from the 

image with points from the model. If the alignment is correct, each pixel of the image can 

be interpreted as a sample of the imaging function R(-). The imaging function could be dis- 

played by plotting intensity against lighting direction, viewing direction and surface normal. 

Unfortunately, because intensity is a function of so many different parameters the resulting 

plot can be prohibitively complex and impossible to visualize. Significant simplification will 

be necessary if we are to detect any structure in this data. 

In a wide variety of real images we can assume that the light sources are far from the 

object (at least in terms of the dimensions of the object). When this is true and there are no 

shadows, each patch of the object will be illuminated in the same way. Furthermore, we will 

14 
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assume that the observer is far from the object, and that the viewing direction is therefore 

constant throughout the image. The resulting relationship between normal and intensity is 

three dimensional: the normal vector has unit length and is determined by two parameters, 

its x and y components; the intensity is a third parameter. A three dimensional scatter plot 

of normal versus intensity is really a slice through the high dimensional space in which R(-) 

is defined. Though this graph is much simpler than the original, three dimensional plots are 

still quite difficult to interpret. We will slice the data once again so that all of the points have 

a single value for the y component of the normal. 

Figure 1.3 contains a graph of the intensities along a single scan-line of the image of RON. 

Figure 1.4 shows similar data for the correctly aligned model of RON. Model normals from 

this scan-line are displayed in two graphs: the first shows the x component of the normal 

while the second shows the y component. Notice that we have chosen this portion of the 

model so that the y component of the normal is almost constant. As a result the relationship 

between normal and intensity can be visualized in only two dimensions. Figure 1.5 shows the 

intensities in the image plotted against the x component of the normal in the model. Notice 

that this relationship appears both consistent and functional. Points from the model with 

similar surface normals have very similar intensities. The data in this graph could be well 

approximated by a smooth curve. We will call an imaging function like this one consistent. 

Interestingly, we did not need any information about the illumination or surface properties 

of the object to determine that there is a consistent relationship between model normal and 

image intensity. 

Figure 1.6 shows the relationship between normal and intensity when the model and 

image are no longer aligned. The only difference between this graph and the first is that the 

intensities come from a scan-line 3 centimeters below the correct alignment (i.e. the model is 

no longer aligned with the image, it is 3 centimeters too low). The normals used are the same. 

The resulting graph is no longer consistent. It does not look as though a simple smooth curve 

would fit this data well. 

In summary, when model and image are aligned there will be a consistent relationship 

between image intensity and model normal. This is predicted by our assumption that there 

is an imaging function that relates models and images. While the actual form of this function 

depends on lighting and surface properties, a correct alignment will always lead to a consistent 

relationship.   Conversely, when model and image are misaligned the relationship between 

15 
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■ 

Position 

Figure 1.3:  On the left is a video image of   RON with the single scan-line highlighted.  On 
the right is a graph of the intensities observed along this scan line. 

intensity and normal is inconsistent. 

A major contribution of this thesis is the derivation of a formal technique that delivers 

a principled estimate of "consistency". We will show that when the mutual information 

between an image and a model is high they are likely to be aligned. Toward making this 

technique a reality we have defined a new approach for evaluating entropy and information 

called EMMA. We have also defined an efficient scheme for adjusting a set of parameters so 

that mutual information and entropy can be optimized. We will use EMMA to effectively 

evaluate and adjust the alignment of three dimensional models and two dimensional images. 

This same technology can be used for the alignment of other types of signals. In its full 

generality, EMMA can be used whenever there is a need to align images from two different 

sensors, the so-called "sensor fusion" problem. For example, in medical imaging data, from 

one type of sensor (such as magnetic resonance imaging) must be aligned to data from another 

sensor (such as computed tomography). We will demonstrate that EMMA can be used to 

solve problems such as this. 

Though developed for alignment, the EMMA estimates of entropy and mutual informa- 

tion can be used in other applications. We will show that EMMA can be used to correct 

inhomogeneities in MRI scans. In addition, we will derive a new approach for dimensionality 

reduction based on entropy. Similar to principal components analysis, our technique can find 

low dimensional projections of higher dimensional data that preserve the most information 

16 
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Figure 1.4: On the left is a depth map of RON with the single scan-line highlighted. At 
top right is a graph of the x component of the surface normal. On the bottom right is the y 

component of the normal. 
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Figure 1.5: THE ALIGNED CASE: A scatter plot of the intensity of the video image versus 
the x component of the surface normal from the model. The image and model are correctly 
aligned. 
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Figure 1.6: THE MISALIGNED CASE: On the left is the misaligned scan-line from the video 
image of RON. On the right is a scatter plot of the intensity of this part of the video image 
versus the x component of the surface normal from the model. 

possible. 

1.2    Overview of the Thesis 

The second chapter contains an overview of the probability theory necessary to understand 

what EMMA is doing and how it does it. The third chapter discusses estimation of entropy 

from samples. While a number of techniques for manipulating entropy currently exist, EMMA 

combines computational efficiency with the flexibility necessary to model a wide variety of 

18 
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distributions. The fourth chapter returns to our discussion of alignment. We show here that 

EMMA is capable of aligning signals where simpler techniques cannot. This chapter will 

present the basic equations that underly alignment by maximization of mutual information. 

The fifth chapter contains a wide variety of alignment experiments designed both to validate 

our approach and explore the scope of possible application. In chapter six we will describe 

applications besides alignment to which we have applied EMMA. For example, our scheme 

for efficiently manipulating entropy includes a stochastic form of gradient descent. We will 

describe a flow estimation problem in which stochastic gradient descent speeds convergence 

by a factor of thirty. Chapter seven will include a discussion of our results and a comparison 

with related work. 

19 



Chapter 2 

Probability and Entropy 

One of the key insights in this thesis is that many of the techniques that are common in 

computer vision, such as correlation, are easily interpreted as statistics of random variables. 

Once this is done we can use a broad range of tools from probability to analyze the behavior of 

these statistics. The theory of probability will help us determine how statistics converge, what 

they converge to, and more importantly how alternative statistics might be more appropriate. 

In this chapter we will introduce the basic mathematics that underly probability. In 

subsequent chapters we will assume that the reader has a fairly thorough knowledge of prob- 

ability, statistics, entropy, and coding. This chapter is intended both as a review of the 

required techniques and theorems and as a bridge for a reader unfamiliar with these topics. 

The hnal sections of this chapter contain a new analysis and discussion of Parzen density 

estimation. Parzen density estimation will play an important role in the estimation of entropy 

in subsequent chapters. 

We will sometimes use a simplified, or looser, definition of concepts like events and random 

variables than is typical. If you get overly confused reading this chapter, any good book on 

probability should clear things up (Papoulis, 1991; Baclawski et al., 1990). In general we 

will leave out the proofs of anything that is easily looked up, and of course most of the theory 

presented is cited here without reference. Unfortunately probability and statistics seems to 

have many conflicting standard notations. In our own definitions we will try to be consistent 

with the prevailing conventions. 

20 
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2.1    Random Variables 

In many cases an algebraic model of a physical system allows us to accurately predict its 

behavior. For instance, circuit theory can be used to analyze a particular circuit and predict 

that when a switch is closed current will flow. The physics of many circuits can be modeled 

as equations where unknown quantities are recorded as variables. In the case of a switched 

circuit, we can model the resistance of a switch as a variable that can take on one of two 

values: zero when closed or infinity when open. The current that flows through that resistor 

can then be predicted from algebraic manipulations. Conversely, knowing the value of the 

current allows us to predict whether the switch is open or closed. The equivalence of a circuit 

and a circuit model is fundamental within the fields of physics and engineering. 

In a wide variety of physical systems the behavior of particular measurements cannot 

be easily predicted. The voltage of a wire may be a complex function of the circuit and the 

thermal noise in a resistor. Even when all of the other circuit variables are known, the voltage 

cannot be predicted accurately. Luckily, all hope is not lost. We may not know the actual 

voltage but we may know that it will be "near" V0, and that it is never, in our experience, 

higher than Vmax. Probability, random processes, and random variables provide the tools to 

quantify the intuitive concepts of "near" and "never". 

A random.variable, or RV, is a variable whose value is unpredictable. Recall that a variable 

is a symbol X and a set of values tix over which the variable can range. For example, A' 

could range over the real numbers between 1 and 10. In this thesis we will assume ttx will 

always be a subset of the real numbers. A random variable A is a variable together with a 

function Px : Slx -+ [0,1] called a probability distribution. For example we can construct 

an RV that models the roll of a six sided die. If the die is "fair" we cannot in advance know 

what its value will be, but we do know that its value will be one of 6 integers from 1 to 

6, and that each will appear roughly one sixth of the time. The RV that describes this die 

includes the variable symbol X, a sample space ttx = {1,2,3,4,5,6} of possible outcomes, 

and a probability distribution function Px(n) which tells us the probability that X will take 

on the value ??,. A particular value of an RV is called a trial for example from a die roll. A 

collection of trials is called a sample. An event is a set A such that A C tix- The probability 

of an event, PX(X <G A) is the proportion of times that you expect to see event A in a large 
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sample. The sum over the sample space of the probability distribution equals one: 

Here we denote the elements of the sample space 0_\- with the lower case letter x. In many 

cases we will write Px(xi), P(X = a;4) or P(xi) for Px(X 6 {xi})1. An RV which takes on 

a finite or discrete set of values is known as a discrete random variable. An RV whose range 

includes some infinite set of continuous values is known as a continuous random, variable. 

A bit of thought leads one to a conundrum regarding continuous RV's—since there are 

an infinite number of possible outcomes the probability of almost every outcome will be zero. 

This will in fact be a continuing annoyance to us as we move toward the definition of entropy. 

Instead of probability distributions for continuous RV's we use probability densities: 

px[Xo) = lmi    . 

The probability of an event can just as easily be defined from the density by 

P{xiow < X < xhigh) =  I        px(x)dx  . 

The probability density of an RV always integrates to 1, 

/>00 

/     px{x)dx = Px{-oo < X < oo) = 1  . 
■/— CO 

It is not true, however, that 0 < px{x) < 1. Probability densities are always non-negative, 

but can have arbitrarily large values. Often densities can be manipulated in the same way 

that distributions are. In subsequent discussion we will avoid duplication whenever definitions 

and theorems are the same for both distributions and densities. 

1 Typically probability books say that this is only done when there is no chance for confusion. We know 
better. 
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Simple Statistics 

A random variable model of a process allows us to answer a variety of quantitative questions 

about the behavior of the process. Though the voltage across a resistor is unpredictable, its 

long term average is not. Let us define the intuitive notion of "long term average" as the 

expected value or mean of an RV. The expected value EX[X] is defined as: 

Ex[X}=   £  XiP(X = Xi) , (2.1) 

or 

EX[X] = Jxp{X = x)dx . (2.2) 

For notational convenience we will sometimes refer to the expectation of A' as E[X]. The 

mean of a random variable is a deterministic function of its distribution. Intuitively E[X] 

is the average of the RV's value over a large sample. We will denote a sample a, somewhat 

non-standardly, by an ordered collection of trials xa, 

a = [...£„...]   • 

The size of a sample ||a|| we will refer to as Na. In a small abuse of notation we will write 

Ea[X] = ^I>a   ' 

for the average over the sample a. Unlike the mean, the sample mean is a random variable. 

The law of large numbers allows us to prove that in the limit the sample mean equals the 

expectation: 

EX[X]=   lim   Ea[X}=   lim   -^- Ex»  ■ (2-3) 

The mean is an example of a statistic. Statistics are deterministic values computed from 

an RV that sum up its gross or long term behavior. Statistics of X are defined as the 

expectation of functions of X or possibly P{X). 

By itself, E[X] does not tell us much about A. For example, the average lottery number 

does not help us guess what the next lottery number will be. In addition to knowing the 

mean, we would like to know on average how close samples of A' will be to the mean. We 
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can tell that the average lottery number is a useless statistic by the fact that the variation in 

lottery numbers is huge. One measure of expected variation is called variance and is defined 

as: 

Var(x) = EX[(X - EX[X])2} = EX[X2} - EX[X]2  . (2.4) 

The square root of variance is the standard deviation, a(X). The standard deviation is a. 

measure of how far, on average, the samples of A' will be from i£[A]. 

Though the expectation of an RV is equal to the infinite mean, as in (2.3), we have not 

explored its relation to the sample mean. Is the sample mean a good estimate for the true 

mean of an RV? In a qualified sense the answer is yes. The expectation of the sample mean 

is the same as the expectation: 

E[Ea[X]} = E[~£Xa] = j-YlE[xa] = E[X] . 

Expectation, because it is defined as an integral, is linear and can be moved inside the 

summation. The sample mean is often called an unbiased estimator of the true mean. But, 

how close on average will the sample mean be to the true mean? Under the assumption that 

the different trials of X are independent and identically distributed, the standard deviation 

of the sample mean is 

<HE.\X\) -   "{X) 

/A. 
Therefore, the standard deviation of the sample mean approaches 0 as Na approaches infinity. 

We can conclude that the sample mean is an unbiased estimate for the true mean, and that 

the quality of the estimate is better for larger samples. 

The mean and variance are the zeroth and first elements of an infinite class of moment 

statistics. These statistics can used to classify the behavior of an RV with ever increasing 

accuracy. 

The Algebra of Random Variables 

Random variables are useful descriptions of processes that occur in the real world. RV's can 

be used in algebraic equations just as variables are. The value of an equation that includes 

an RV is another random process. A new RV, Y, can be defined from X as Y = F(X). For 
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discrete RV's, the probability distribution of Y is easily defined as: PY(F(n)) = Px(n). For 

continupus RV's it is not quite as simple, 

pY{F(x)) = 
dF{x) 

d.x 

Intuitively this equation tells us to scale down the density at points where  ^f-  is large. In 

these regions F acts to stretch out A'. The density px(x) gets diluted by this stretching. 

With this new theory of random variables, and many identities that can only really be 

hinted at here, we can begin to analyze systems such as the noisy circuit described above. We 

can answer questions like, "If there is random noise in the voltage from a power supply, how 

much variation will there be in the current across a resistor on the other side of the circuit?" 

In general this kind of analysis starts from a description of the distribution of one RV and 

derives the distribution of other functionally related RV's in the system. 

Joint and Conditional Distributions 

When one RV is a function of another RV, as in Y = F(X), Y and A are said to be dependent. 

Measuring A allows us to predict Y. It is also possible that two RV's are related but not 

directly predictable from each other. An example is a noisy voltage source that is powering 

a noisy current source. Actually measuring voltage tells you something about current, but it 

doesn't tell you everything. There is still unpredictability that arises from the current source 

itself. Finally, it is possible that two RV's are completely independent. For example, two 

different rolls of a fair die are considered independent. 

Dependency can be formalized by examining the joint distribution of two RV's, P(X, Y). 

The joint distribution tells us about the co-occurrence of events from the RVs A and Y. It is 

a complete description of the random behavior of both X and 1". From the joint distribution 

one can compute the marginal, distributions: 

P(X)=  £ P(X,Y = y) 
yeüy 
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and 

P(Y)=  £ P(X = x,Y)  . 
X&üx 

Two variables are independent if 

P{X,Y) = P{X)-P{Y)  . (2.5) 

They are considered dependent when the joint distribution is not the product of marginal 

distributions. A closely related distribution, the conditional distribution, P(Y \ X), is the 

probability of Y if we knew A'. It is defined as: 

P(X Y) 
P(Y\X)        l   '    ' 

P(X) 

Complete, functional dependence can be determined from conditional probability when it is 

the case that for all x £ fix that 

P(Y = F{x) \X = x) = l   . 

What is known as Bayes' Law can be concluded from the following equation: 

P(Y)   P(X)        *    •    'P(F) 

Bayes' Law inverts conditional probabilities. It is quite useful in situations where one would 

like to conclude the distribution of X from a measurement of Y, but in principle all that is 

known is P(Y \ X). 

2.2    Entropy 

Entropy is a statistic that summarizes randomness. The definition of a random variable 

makes no mention of how random the variable is. Is a lottery number more or less random 

than the roll of a die? Entropy helps us answer this question. As we will see, the more 

random a variable is the more entropy it will have. Much additional material on entropy can 

be found in the excellent textbook by Cover and Thomas (Cover and Thomas, 1991). 
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Entropy in one form or another is a very old concept. Its origins clearly date back to the 

first work on thermodynamics in the last century. Nonetheless, most of the credit for defining 

entropy and promoting its use in data analysis and engineering falls to Shannon (Shannon, 

1948). The most straightforward definition of entropy is as an expectation: 

H(X) = -Ex[\og(P(X))] = -   £   \og(P(X = Xi))P(X = Xi)  . 
x,Ett X 

where we define 0 log(O) = 0 here and elsewhere in the thesis. The classical definition of 

entropy applies only to discrete random variables. We will present the definition of continuous 

entropy, known as differential entropy, later. Entropy is typically defined in terms of the 

logarithm base 2. In that case entropy is given in units of bits. 

Entropy is Code Length 

One way of measuring randomness is to compose the shortest message that describes either 

one or a number of trials of an RV. A trial of a fair coin takes one bit of information to 

encode: a 1 for heads and a 0 for tails. There is no more efficient technique for encoding a 

single trial2. This restriction does not apply to a message that describes a sample of many 

trials. If the coin in question comes up tails only one time in a thousand, there are a number 

of straightforward schemes for encoding a sample that require less than one bit per trial. For 

instance one could send the length of the sample a and then the position of the zeros. It 

would take log(iVQ) bits to send the length and log(iVa) bits to send the position of each zero. 

The length of a message describing Na flips of our coin would on average be 

E[length(a)] = log(JVa) + P(X = 0)Na log(JV0)  . 

In this coding scheme a message describing one thousand trials will on average take about 

20 bits. The number of bits it takes to encode a sample is dependent both on the number of 

events and the distribution of the random variable. 

A discussion and comparison of coding schemes could take up quite a lot of space. Luckily, 

using the Kraft inequality it can be proven that on average one needs to send H{X) bits to 

communicate a trial of the random variable A'. Furthermore, Shannon showed that is possible 

^ Provided the coin doesn't have two heads. 
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to construct a code that will take at most H(X) + 1 bits on average. A simple algorithm 

discovered by Huffman can construct the shortest possible codes for any random variable. 

Because entropy is a bound on the code length that is required to transmit a trial, entropy 

is often called information. 

Conditional Entropy, Joint Entropy, and Mutual Information 

The concept of mutual information plays a critical role in this thesis. One of the key problems 

that we will need to solve is, "How likely is it that the random variable Y is functionally 

dependent on AT' In Section 2.1 we saw that two RV's were independent if and only if their 

joint density was the product of their marginal densities (see (2.5)). Entropy will allow us to 

quantify the extent to which two RV's are dependent. 

Quantifying dependence is very much like quantifying randomness. Total dependence 

implies that a measurement of one RV completely determines the other (i.e. knowledge of 

X removes any randomness from Y). Independence is just the opposite (i.e. knowledge 

of A' does not help you predict Y). Just as joint and conditional distributions relate the 

co-occurrences of two RV's, entropy can be used to relate the predictability of two RV's. 

Conditional entropy and joint entropy are defined as: 

H(Y | X) = Ex[EY[log(P(Y | A))]] 

and 

H(Y,X) = Ex[EY[log(P(YX))}} . 

Conditional entropy is a measure of the randomness of Y given knowledge of A". Note that it 

is an expectation over the different events of X, so it measures on average just how random 

Y is given X. H(Y \ X = x) is the randomness one expects from 1* if A' takes on a particular 

value. Random variables are considered independent when 

H(Y | X) = H(Y) 

or, 

H(X, Y) = H(X) + H(Y)  . 
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As Y becomes more dependent on A, H(Y | A') gets smaller. However, conditional 

entropy by itself is not a measure of dependency. A small value for H(Y\X) may not imply 

dependence, it may only imply that H(Y) is small. The m.utual information, MI, between 

two random variables is given by 

I{X,Y) = H(Y)-H{Y\X)  . (2.6) 

I(X, Y) is a measure of the reduction in the entropy of Y given A'. 

A number of simple logarithm equalities can be used to prove relations between conditional 

and joint entropy. For instance, conditional entropy can be expressed in terms of marginal 

and joint entropies: 

H(Y | A) = H{X, Y) - H(X)  . 

This allows us to provide three equivalent expression for mutual information (and a useful 

identity): 

I(X,Y) = H(Y) - H(Y | A) (2.7) 

= H(X) + H(Y)-H(X,Y) (2.8) 

= H(X) - H(X | Y) (2.9) 

= /(F,A) . (2.10) 

An extremely useful inequality on expectations, known as Jensen's inequality, allows us 

to prove that for any concave function F that 

E[F(X))] < F(E[X})  . 

A function is concave when its second derivative is negative everywhere. Using the fact that 

the logarithm function is concave, Jensen's inequality allows us to prove the following useful 

inequalities: 

H(X) > 0 (2.11) 

H(Y) > H{Y | A) (2.12) 

I(X,Y)>0 (2.13) 
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2.2.1    Differential Entropy 

While a number of the main theorems of entropy apply both to continuous and discrete 

distributions, a number of other theorems change significantly. The continuous version of 

entropy is called differential entropy, and is defined as: 

h(X) = -Ex[log(p(X))} = - r p(x)\og(p(x))dx  . (2.14) 
J — CO 

For the most part differential entropies can be manipulated, and obey the same identities, 

as entropy. In fact all of the equalities and inequalities of the previous section hold except 

for (2.11). Throughout the thesis, when entropy is mentioned, it is to be understood as the 

applicable form of entropy. When the difference matters we will be explicit. 

The most perplexing difference between entropy and differential entropy is that there is 

no longer a direct relationship between h(X) and code length. It is possible to construct 

examples where differential entropy is negative. This is an implication of the fact that p(X) 

can take on values greater than 1. Code length, however, is never negative. 

Differential entropy does not provide an absolute measure of randomness. Discouragingly, 

it is even the case that a density with a differential entropy of negative infinity may still be 

unpredictable. Examples of this sort can be constructed by embedding a discrete process 

into a continuous space. For example one could model the roll of a die as a continuous RV. 

The density would then be made up of a series of delta functions centered at the points one 

through six. A delta function, often called a Dirac delta function, can be defined from a box 

car function, 

b{x,xlow,xhigh) = {   ^ *'«« . (2.15) 
0 otherwise 

The box car function is defined so that it integrates to one. The delta function is a box car 

function in the limit as it approaches zero width, 

S(x)= lim6(rr,0,A)  . (2.16) 

The delta function, because it is a box car, integrates to one. It can be shown that 

f(x0)=  r S(x0-x)f(x)dx (2.17) 

30 



2.3.   SAMPLES VERSUS DISTRIBUTIONS AI-TR 1548 

Furthermore, from the definition of convolution, 

/oo 
f(x - x')g(x')dx' (2.18) 

-CO 

we can see that the delta function is the identity operator, 

/CO 

S(x-x')f(x')dx' = f(x)  . (2.19) 
-oo 

The density of the continuous model of die rolling can be formulated as 

*>(*) = £^(*-o (2-2°) 

which will integrate to 1. Furthermore if we define the probability of an event as 

rx+A 
P(x) = lim /        p(x)  , (2.21) 

A-H) Jx-A 

then P(X = 1) = |, as will the probability of the other events. Finally we can show that the 

entropy of A" is negative infinity, 

/•CO 6     1 

h(X) = - /     p(x') log(p(x'))dx' = - £ Z log(oo) = -oo  , (2.22) 

yet X is pretty clearly random. 

Though differential entropy does not provide an absolute measure of randomness or code 

length, it does provide a relative measure of these properties. A random variable X is less 

predictable than Y whenever h{X) > h(Y). Similarly an event from X requires more bits 

on average to encode than an event from Y. 

2.3    Samples versus Distributions 

A random variable is a mathematical structure that is intended to model the behavior of a 

physical process. In some cases there are excellent physical reasons to believe that an RV 

is an accurate model of a process. In many other cases the properties of a random physical 
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process may well be unknown. In these cases we may still wish to use the theory of probability 

to analyze a system. The first step is to find an accurate RV model of our data. 

In order to insure that our probabilistic inferences will be correct, our model must be as 

accurate as possible. While it is possible to model every coin as a fair coin, we do so at 

our peril. It makes much more sense to perform a large number of experiments intended to 

test the hypothesis, "Is the coin fair?" There are two important intuitions behind finding an 

accurate model of a random process. First and foremost, you want a model that seems to 

explain the data well. It might not make sense to guess that a coin is fair if after 500 flips 

heads has come up 400 times. But it is also important that your model be plausible. If after 

a lifetime of experience you realize that most coins are pretty fair, than perhaps it makes 

more sense to assume that 400 heads is unusual but not sufficiently unusual to assume that 

the coin is biased. 

2.3.1     Model Selection, Likelihood and Cross Entropy 

The field of statistics provides many tools for testing the validity of random models. A lot of 

this work shares a particular form, called maximum likelihood model selection. The goal is to 

select the most probable model given a large sample of measurements. Maximum likelihood 

selection proceeds in steps: (1) guess the definition of a random variable that might model 

the process; (2) evaluate the "goodness" of the model by computing the probability that the 

data observed could have been generated by the model, (3) after evaluating many models 

retain the model that makes the data most probable. The probability of a sample a under 

the RV X is the probability of the co-occurrence of the trials in a, 

1(a) = Px(a) = Px(xi = xai,x2 = xa2,...)  . (2.23) 

The probability of a sample is usually called its likelihood and is denoted 1(a). 

Justification for maximum likelihood model selection is based on Bayes' law. The likeli- 

hood of a sample is really a conditional probability, P(a | A'). Bayes' law allows us to turn 

the conditional around and find the most likely model given the sample, 

P(X\a) = P(a\X)^  . (2.24) 
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In order to compute the model likelihood one must multiply the sample likelihood by the 

correcting factor ^Q The unconditioned probability of the sample P(a) could well be 

arbitrary, because the sample is the same for all of the models we will evaluate. The prior 

probability of the model, P(X), poses more problems. Maximum likelihood model selection 

assumes that all of the models that are to be evaluated are equally likely to have occured, i.e. 

P(X) is constant. As a result ^j- is the same for all models, and the most probable model 

is the one that makes the data most probable. 

When reliable information about the prior probability of a model is available we can use 

Bayes' law directly. This technique is known as maximum, a posteriori model selection. For 

instance, over a wide variety of experiments, we may have observed that fair coins are far 

more common than unfair coins. It is very implausible that any particular coin would be 

unfair, but not impossible. While our prior knowledge should bias us toward the conclusion 

that a new coin is fair, it does not determine our conclusion. The likelihood of a model 

together with its prior probability can be used to determine which model has the highest 

probability of explaining the data. We want a model that both explains the data well and is 

plausible. 

In general, evaluating joint probability over a large number of random variables is intract- 

able. In practice most maximum likelihood schemes assume that the different trials of A" are 

independent. The probability of co-occurrence is then the product of the independent RVs, 

*(") = II P*(x«) ■ 

Maximizing 1(a) is still a daunting process. Significant simplification can be obtained by 

maximizing the logarithm of £, 

log£(«)= 'ElogPxM  . 
xaea 

Log likelihood has the same maximum as £(a), but has a much simpler derivative. 

There is an interesting parallel between log likelihood and entropy. Recall that entropy is 

a statistic of X. The finite sample average of entropy, or empirical entropy, which will figure 
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strongly later in the thesis, is 

1 
ha(X) = -Ea[logPx(X)} = -WE log^(; (2.25) 

We can therefore conclude that 

ha(X) = -— log(£(a)) (2.26) 

This provides us with an interpretation of model selection in terms of entropy. Instead of 

finding the model that makes the data most likely, we could instead find the model that has 

the lowest empirical entropy. Conversely, we could present a new interpretation of entropy: 

a distribution has low entropy if the probability of a sample drawn from that distribution is 

high. A distribution has high entropy if the sample has low probability. A density with a 

very narrow peak has low entropy because most of the samples will fall in the region where 

the density is large. A very broad density has high entropy because the samples are spread 

out and fall where the density is low. 

The close relationship between entropy and log likelihood is well known, but is often 

overlooked by students of probability. As result the parallels between research on entropy 

and maximum likelihood can be easily missed. The fact that a system manipulates "entropy" 

does not make it necessarily any better, or different, than one based on likelihood. For 

instance, log likelihood model selection can be derived directly from the entropy framework 

using cross entropy. The cross entropy, D(px\\Px)-, or asymmetric divergence is a measure 

of the difference between two distributions: 

D{px\\px) = Ex log( 
Px(X) 

Px(X)} 

(px(x') 

-co ogUr(*'). 
CO 

oo 

px(x')dx 

log(px(x'))px(x')dx 

=-h(X) - Ex[log(px(X))] 

*-h(X) - Ea[log(px(X))] 

= -h(X) + ha(X)  . 

log(px(x'))px(x')dx 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Cross entropy is non-negative, reaching zero if and only if px and px are identical. Where 
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maximum likelihood model selection searches for the model that makes the sample most likely, 

cross entropy model selection searches for the model that is closest, in the cross entropy sense, 

to the true distribution. If we use the approximation in (2.31), the two procedures are in 

fact identical. The first term in (2.31), h(X), is a constant and does not play a role in model 

selection. The second term, ha(X), is -Na times the log likelihood of a sample drawn from X 

under the density p(x). Minimization of cross entropy implies the maximization of likelihood. 

2.4    Modeling Densities 

In this section we will describe a number of techniques for estimating densities from data. 

Understanding the process by which this is done is an important prerequisite for understand- 

ing the main algorithms in this thesis. We will begin with a discussion of the most widely 

observed continuous density: the Gaussian density3. We will then derive an closed form 

expression for the most likely Gaussian given a sample. This section will also include a 

discussion of other parametric density functions and finally a non-parametric technique for 

estimating densities known as Parzen window density estimation. 

2.4.1    The Gaussian Density 

The most ubiquitous of all random processes is the Gaussian or normal density. It literally 

appears everywhere. The most common justification arises from the "central limit theorem", 

which shows that the density of the sum of a very large number of independent random vari- 

ables will tend toward Gaussian. An equally important justification is that the mathematics 

of the Gaussian density are quite simple because it is an exponential. Moreover, since any 

linear function of a Gaussian density is itself Gaussian, they are widely used in linear systems 

theory. It is almost certainly the case that the majority of continuous random processes have 

been modeled as Gaussians; whether they are or not. A Gaussian density is defined as: 

^-„Js      *     e-i1^   . (2.33) 
\/2ir?p 

3For the sake of brevity we will sometimes refer to a Gaussian density as simply a Gaussian. 
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The parameters tp and // are the variance and mean of the density. One can demonstrate this 

with some clever integration. 

The Gaussian density can also be defined in higher dimensions: 

1 .    1 Tj-li g^x - fx) = exp(--(x - ß)1 i~\x -/,)). (2.34) 
(Z7r)2 |^;[2 L 

In a d dimensional space, the mean \.i is a </-vector. The variance is replaced by a covariance 

matrix, a d-by-d matrix (|V'| is the determinant of ?/')• Recall that variance is defined as the 

expected square of the difference from the mean; covariance is somewhat more complex: 

fa = E[(Xi - E&iDiXj - E[Xj])] , (2.35) 

where Xi is the i'th component of the RV A'. The diagonal entries of ip contain the variances 

of the components. The off-diagonal entries measure the expected co-variation. 

Equation (2.33) defines an infinite family of density functions. Any one member of this 

family is determined by its mean and its variance. Before we can attempt to model an 

unknown density with a density from this family, we must first decide if the density is 

Gaussian. Maximum likelihood model selection can then be used to estimate // and z/' from a 

sample. The form of the Gaussian density makes finding the maximum likelihood parameters 

very easy. The log likelihood of a sample of a Gaussian density is 

log(^a)) = £ logfPjr(*«)) (2.36) 
xa€a 

= E log(<7V,(*a - /")) (2.37) 
xaEa 

= EM-i)-^ • (2-38) 
xaEa 

The most likely /i minimizes 

S(za-A')2   > 
xa£a 

a quadratic function of //. Differentiating and solving for zeroes we find that the most likely 

/i is 

/< = ;#£*« • 
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Figure 2.1: Three views of a Gaussian density with a mean of 0.0 and a variance 1.0: First 
a sample of 100 points drawn from the density. Each point is is represented a vertical black 
line. Second the density of the true Gaussian. Third the density of the Gaussian estimated 

from the sample (mean = 0.045, variance = 0.869). 

This is a very satisfying result. We have proven that the most likely estimate for the mean, p, 

is the mean of the sample. A very similar argument can be used to prove that the maximum 

likelihood estimate for the variance, V', is the sample variance: 

V' = TT E K - I1?   ■ 

Figure 2.1 displays a 100 point sample drawn from a Gaussian density. The true density 

is shown together with the most likely model. Because the sample mean and sample variance 

are not perfect measures of the true mean and variance, the most likely model is not perfect. 

The accuracy of the estimated mean and variance gets better as the sample size increases. 

Even for a sample of 100 points there is significant variability in the estimated model for 

different samples. Figure 2.2 shows ten different estimates from ten different samples of the 

same density. 
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Figure 2.2: The maximum likelihood density estimates for ten different samples of 100 points 
drawn from the same Gaussian. 

2.4.2    Other Parametric Densities 

Finding the most likely Gaussian model for a sample is a very efficient operation. The mean 

and the variance are trivially computable in linear time. Efficient estimation is a property 

shared by all of the exponential densities, a class of densities which include the Gaussian 

density, the Gamma density, and others. For all other types of densities it is not possible 

to find maximum likelihood parameter estimates directly from statistics of the density. The 

most likely set of parameters must be determined by a search process. Since there are an 

infinite number of possible parameter values, finding values for these parameters that are 

optimal is not straightforward. Generally problems of this sort are solved using an iterative 

refinement process known as gradient descent. The gradient descent procedure is described 

in Appendix A.l. 

The Gaussian density has many advantages. Why not use it to model every sample? The 

simple answer is that not all real densities are Gaussian. In fact, many real densities are far 

from Gaussian. One of the strongest limitations of the Gaussian, and of all the exponential 

densities, is that they are unimodal (they have a single peak). Modeling densities that have 

multiple peaks as if they had a single peak is foolhardy. Figure 2.3 shows an attempt to fit 

a two peaked function with a single Gaussian. In many situations it may seem as though 

the simplicity and efficiency that arises from using a Gaussian density outweigh the added 

accuracy that arises from using a more accurate model. As we will see, this is a temptation 
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Sample - 
True Distribution - 

M.L. Fit - 

Figure 2.3: Three views of a density constructed from a combination of two Gaussians. The 
Gaussians have variance 0.3 and means of 2.0 and -2.0 respectively. As before the sample 
contains 100 points. The maximum likelihood Gaussian has mean 0.213 and variance 3.824. 

to which many have succumbed. 

Once the decision to use a more complex model has been made, the set of possible model 

densities is literally infinite. In terms of accuracy this is an unambiguous advantage. Density 

can be modeled by any function that can be guaranteed to integrate to one. The most 

common model after the simple Gaussian is a mixture of Gaussians: 

N 

M{x,W) = Y,C* 9i'Ax ~ & 
i=l 

(2.39) 

here W represents the collection of parameters (Ar, {/^}, {4\}, {c2}). When £ c, = 1, the 

mixture model is guaranteed to integrate to one. A mixture density need not be uni-modal; 

it may have as many as N peaks. Figure 2.3 contains a graph of a mixture of Gaussian 

density with two equal components. Given a large number of Gaussians, almost any density 

can be modeled accurately. As before, maximum likelihood can be used to select the best set 

of parameters for a given sample a. It is possible to search for the correct parameter vector 

using gradient ascent, but for Gaussian mixture models there is a more efficient technique 

known as Expectation Maximization (Dempster et al, 1977). In either case finding the best 

parameter vector can involve a lengthy search process. 

While mixture models are fairly popular, almost any parameterized function can be used 

39 



Paul A. Viola CHAPTER 2.   PROBABILITY AND ENTROPY 

as a density estimate. Within the neural networks literature some have trained back propaga- 

tion neural networks to approximate densities (Jacobs et al., 1991) (see also (Haykin, 1994) 

for an excellent review of neural network research). There is nothing terribly special about 

using a neural network for this purpose. It is just another form of parametric density estim- 

ation. 

Now that we have some feel for the density estimation process, it is critical that important 

limitations be pointed out. Whenever one estimates a density from a sample a very important 

first step is required: assumptions must be made about the form of the density. The space 

of possible functions is so large that for any sample there are an infinite number of density 

functions that fit it equally well. Continuous density can defy intuition. For instance it 

is always possible to define a density that makes a given sample infinitely likely. Take for 

example a density function made up of delta functions. As we did in section 2.2 we could 

make up a function with a delta function for each trial: 

P(X) = ^-T, s(* - *») ■ (2-4°) 

The likelihood of this model density is then oo, and is guaranteed to be bigger than any other 

density's likelihood. Wouldn't this imply that fitting any other density is sub-optimal? While 

intuition argues against such an artificial density, there is no principled scheme for dealing 

with this dilemma. 

Much has been written about this problem in the machine learning literature, where it 

is called function approximation. There simply is not enough information in a. finite sample 

to uniquely determine which of the infinite number of possible functions fit the sample best. 

The only solution is to make strong assumptions about the form of the correct function: for 

example that it is Gaussian, that it is polynomial, or that it is smooth. These assumptions 

provide a strong prior probability over the space of possible functions. Together the likelihood 

of a function and its prior probability can often uniquely determine a solution. 

Maximum likelihood model selection is not guaranteed to do a good job of density es- 

timation. There are three reasons why the most likely model may fail to be an accurate 

model. The first reason is that the set of evaluated models may not contain the correct 

model. This is called inductive inadequacy and it arises when the underlying assumptions 

about the density are wrong.  The second reason is that maximum likelihood can be fooled. 
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An especially unlikely sample, as in our example of the unbiased coin (see Section 2.3), can 

lead to a model estimate that is not correct. This is a question of confidence. A larger sample 

is less likely to be unusual, and gives us more confidence in our model. The third reason is 

that the search through parameter space may fail. A good solution may exist but cannot be 

found, for example if there are local minima. 

2.4.3    Parzen Window Density Estimation 

The final class of density functions we will discuss are called non-parametric density estim- 

ators. For these models no search for parameters is needed. While parametric methods use 

the parameters as the model, non-parametric methods use the sample to directly define the 

model. 

The non-parametric scheme on which we will focus is known as Parzen window density 

estimation. The general form of the density is: 

P*(x,a) = -^^R(x-xa)   , (2.41) 
a xaea 

where a is a sample and R is a valid density function. The function R is often called the 

smoothing or window function. The quality of the approximation is dependent both on the 

functional form of R and its width. Different window functions will lead to very different 

density estimates. The Gaussian density is a common selection for Ä, making the Parzen 

density estimate a mixture of Gaussians. There is one Gaussian centered at each sample. 

Figure 2.4 contains a graph of a density, a sample, and the Parzen estimate constructed from 

the sample. Figure 2.5 contains a graph of ten different Parzen estimates from ten different 

samples. The different Parzen estimates do not show significantly more variation than the 

Gaussian estimates shown in Figure 2.2. 

In practice the Parzen density estimate is much more flexible than a parametric density 

estimate. Where parametric techniques make very strong assumptions about the functional 

form of the density to be approximated, Parzen estimation requires only that the density be 

smooth. Figure 2.6 shows the Parzen density estimate of a bimodal distribution. Contrast it 

to the parametric estimate of the same density as shown in Figure 2.3. 
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Figure 2.4: Three views of a Gaussian density with a mean of 0.0 and a variance 1.0: First 
a sample of 100 points drawn from the density. Each point is is represented a vertical black 
line. Second the density of the true Gaussian. Third the Parzen density estimate constructed 
from the sample. The window functions are Gaussians with variance 0.35. 

Intuitively, the Parzen density estimator computes a local, or windowed, average of the 

sample. Looking back to (2.41), notice that if R is symmetrical about the origin we can 

view the window function as being centered on the query point, x, rather than at the data 

points. Viewed in this light, the density estimate at a query point is a weighted sum over 

the sample, where the weighting is determined by the window function. The most common 

window functions are unimodal, symmetric about the origin, and fall off quickly to zero. In 

effect, the window function defines a region centered on x in which sample points contribute 

to the density estimate. Points that fall outside of this window do not contribute. The 

density estimate at x is the ratio of the number of weighted sample points within the window 

divided by the total number of sample points, Ar
a. Getting a reliable estimate of this ratio 

involves having a reasonable number of points fall into the window around the query point. 

The number of points that we expect to fall into this window is a function both of the size 

of the sample and the size of the window. As the number of points that fall into a window 

decreases, the variance of the Parzen density estimate increases. We will analyze the variance 

of the Parzen estimate later in the chapter. 

The balance of computation required by Parzen window density estimation is qualitatively 

very different from parametric schemes. Constructing a parametric model involves a lengthy 

search through parameter space that takes more time for larger samples.   Constructing a 
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Figure 2.5: The Parzen density estimates for ten different samples of 100 points drawn from 

the same Gaussian density. 

Parzen model is cheap. One need only memorize the sample. Evaluating a parametric model 

is usually efficient. Once the parameters are known the number of operations required is 

usually very small and does not grow with the size of the sample. Evaluating P*(x, a) is more 

expensive; requiring time proportional to the size of the sample. The overall computational 

complexity of either technique is a function of how they are used. 

Though the Parzen estimate is a mixture model, it is not the maximum likelihood mixture 

model. Unlike the Parzen estimate, the maximum likelihood model is not constrained to place 

one Gaussians at each of the sample points. There is however an asymptotic proof of Parzen 

convergence that relies on the law of large numbers. The Parzen estimate can be written as 

a sample mean: 

P*{x0,a) = ^ E R(x* " xa) = Ea[R(x0 - X)] 
1 'a xa€a 

In the limit this equals the true expectation which in turn is a convolution 

lim   P*(x,a) 
Na-H>0 

= E[R(x - X)} 

=  r R(x - x')p(x')dx' 
J — CO 

= (R*p)(x)  . 

(2.42) 

(2.43) 

(2.44) 

So P*(x,a) converges to p{x) if and only if p(x)  =  (R * p)(x).    There are two distinct 

conditions under which equality holds.   The first is that R tends toward the delta function 
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Figure 2.6: Three views of a density constructed from a combination of two Gaussians. The 
Gaussians have variance 0.3 and means of 2.0 and —2.0 respectively. As before the sample 
contains 100 points. The Parzen estimate is constructed with Gaussians of variance 0.20. 

when the sample size approaches infinity. The second occurs when convolution by R does not 

change p(x). In theory this could be achieved when p(x) has bounded frequency content and 

R is a perfect low pass filter. In practice approximate equality holds whenever p(x) has low 

frequency content and R is primarily a low pass filter, for example when p(x) is a smooth 

function and R is a Gaussian. Finally, whenever p(x) = (R * p){x) the Parzen estimate, 

P*(x,a), is an unbiased estimator of p(x). 

There are other conditions under which the Parzen estimate will converge to the correct 

density estimate. This proof assumes that the samples are corrupted by measurement noise 

of a known density. Instead of X, a corrupted random variable, X = X + ">], is observed. If 

i] were known the probability of X would be, 

p(X = x\X = x, ?/) = S(x — x — ?/)   . 

Without knowledge of ?/ we must integrate over all its possible values, 

p(X = x\X = x) =  /     p(X = x\X — x, ?/)?>??('/W 
J — oc> 

S(x -x - rj)pv{rj)di] 

Po(x-x)  . 

(2.45) 

(2.46) 

(2.47) 
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To compute p(X) we must integrate over X. We show that the integral is approximated by 

the Parzen estimator, 

p(X = x) = r p(X = x\X = X')px{X')dX' (2.48) 
J —oo 

= rPri(x-X')pz(X')dX' (2.49) 
J—oo 

= E^[pJx-X)} (2.50) 

to Ea\pn(x - £a)\ (2.51) 

4E^O-^) > (2-52) 

where a is a sample of X. The probability of the uncorrupted random variable X is ap- 

proximated by the Parzen estimate constructed from the samples of X where the smoothing 

function is the density function of the noise. The probability of the corrupted random variable 

can be derived from a very similar argument, 

p(X = i) to — ]T (pv * pv)(x0 - xa)   . 

The probability of a noise corrupted random variable X is approximated by the Parzen 

estimate using the smoothing function (p.n *pv)(x). This result is independent of the density 

of X. Often ?? is Gaussian noise, a very common assumption that we will return to in our 

discussions of entropy. The smoothing function is then a Gaussian density that has twice the 

standard deviation of ??. 

Finding the Best Smoothing Functions 

As we have seen, when a priori information about the density is available Parzen estimation 

will converge to the correct density. Moreover, when we know either that the density is smooth 

or that it has been perturbed by noise it is possible to find the correct smoothing function. 

In the absence of a priori information, the quality of the Parzen estimate is dependent on the 

variance i> of the smoothing functions. Figures 2.7 and 2.8 display the dependence of the 

density estimate on I[K Each shows the Parzen estimates computed from a 100 point sample 

as V is changed. Notice that the actual density function that results is very dependent on 

the variance. The qualitative nature of this dependence varies across the range of variances 
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Figure 2.7: Five plots of the Parzen density estimates derived from a 100 point sample of 
a Gaussian. The Gaussian has variance 1.0 and mean 0.0. The different estimates use a 
different value for the variance of the component smoothing functions. The variances used 
range over a factor of 256, from 0.005 to 1.28. 

shown. When the variance of the smoothing function is small, less that 0.1, the resulting 

density changes very rapidly as variance is changed. Above 0.2 small changes in variance do 

not change the resulting density nearly as rapidly. 

Selection of the correct variance for the smoothing functions need not be a hit or miss 

process. Much in the same way that likelihood can be used to find the parameters of a 

Gaussian to fit a sample, likelihood can be used to find the variance of the Gaussians that 

make up the Parzen estimate. In general it is possible to compute the best variance for each 

Gaussian in the Parzen density estimate separately. This process requires a great deal of time 

and data. Since we wish to preserve the simplicity of the Parzen estimate, a single variance 

will be used for all of the smoothing functions. 

Recall that likelihood is maximized when empirical entropy is minimized (see Section 2.3.1). 

Since subsequent chapters will focus on empirical entropy, we will use empirical entropy to 

estimate the optimal variance. Figure 2.9 graphs the empirical entropy of the sample versus 

variance. The sample used in this graph is the same as was used to estimate the densities in 

Figures 2.7 and 2.8. The broad minimum in entropy at 0.25 implies that the Parzen density 

estimate is not critically dependent on variance. The variance need only be within a factor 

of ten of the optimal variance. 
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Figure 2.8: A parametric surface plot of the Parzen density versus variance (this is the same 
data shown in the previous graph). The horizontal and vertical axes are the location and 
density respectively. Variance changes with depth in the graph. Here variance ranges from 

0.80 to 0.01. 

The true entropy of a Gaussian with variance 1.0 is 1.419. The optimal Parzen density 

estimate has an empirical entropy of 1.47. This close agreement is not coincidence. It is 

argued in the next chapter that the true entropy of a density can be effectively estimated 

from a Parzen density estimate. 

There is a small technical note that should not be overlooked. We must be careful 

whenever the same sample that is used both to construct the Parzen estimate and to estimate 

entropy. Recall that the most likely, or lowest entropy, density estimate for a sample is a 

collection of delta functions centered at each point from the sample (see 2.2.1). We also know 

that this delta function density will have an entropy of negative infinity. The Parzen density 

is very similar in form to the delta function density. It too centers a function at each point 

from the sample. In the limit as the variance of the smoothing functions tends towards zero, 

each smoothing function approximates a delta function. Therefore the minimum empirical 

entropy should be obtained when the variance is zero. This difficulty only arises when the 

sample from which the density is estimated is the same as the sample with which empirical 

entropy is calculated. If these two samples are different, and the density is not degenerate in 

some way, then no point should appear in both samples. As the variance of the smoothing 

functions tends to zero the density at all points that are not in the Parzen sample tends to 

zero. As a result the empirical entropy should tend toward positive infinity as the variance 
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Figure 2.9: A log plot of negative log likelihood versus xi\ Near the minimum, the log 
likelihood is not terribly sensitive to the tjj. Values within a factor of 10 are all roughly 
equivalent. 

tends to zero.   This effectively precludes the solution where the variance of the smoothing 

functions is zero. 

We can simulate having two different samples by a process called cross-validation. Cross- 

validation splits a single sample a into two samples. One sample has a single point {x} and 

the second contains the remaining points a — {x}. There are Na different ways to split the 

sample in two parts. Rather than draw two different samples, we use the Na different split 

samples. In each case the larger sample, of size Na — 1, is used for the Parzen estimate, and 

the smaller sample is used to estimate the entropy. Estimating log likelihood or empirical 

entropy with two samples a and b yields 

log(^)) = -Nbhb(X) = -NbEb[logP*(X,a)]  , (2.53) 

versus 

■NaEa[\og(P*(xa,a-{xa}))] :2.54) 

using cross validation. The cross validated empirical entropy is an unbiased estimate of the 

two sample empirical entropy. 
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The Quality of the Parzen Estimate 

One way to evaluate the quality of the Parzen estimate is to evaluate the standard deviation 

of its estimate. Another, perhaps more useful statistic is the standard deviation normalized 

by the mean 

^1 (2.55) 
E[X] 

The normalized standard deviation measures expected deviation from the mean as a function 

of the overall scale. For many types of problems, when the mean of a variable is large, small 

deviations about the mean are usually unimportant. But when the mean is very small, a 

small deviation can make a big difference. Normalized standard deviation is a good measure 

to use when the log of a variable is important (like log likelihood and entropy). Using 

the constant and linear terms of the Taylor expansion of logarithm and assuming that the 

standard deviation of X is small, 

*(log(A')) « ^||  • (2-56) 

The standard deviation of the Parzen density estimate at a point x is a function of the total 

number of sample points used to estimate the density. The normalized standard deviation of 

a Parzen estimate is 
<r{P*{x,a)) = a{P*{x,a)) f2 5?) 

E[P*(x,a)] p(X)        ' 

where both the standard deviation and the expectation are taken over the space of possible 

samples. The two equations are equal whenever P*(x,a) is an unbiased estimator for p(X). 

The standard deviation of the Parzen estimate can be computed exactly when the smooth- 

ing functions are box car functions. The Parzen estimate is then the number of sample points 

that fall into the box car window divided by the total number of sample points, 

P%*,a) = +-£,*(*-*•) = IT   ■ ^58) 

where Nin is the number of points for which R[x - xa) is non-zero, and k = #(0) is chosen 
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so that P* integrates to one. The standard deviation of the Parzen estimate is, 

a(P*(x,a)) = ^-a(Nm)   . 

Assuming each point in the sample is independent then 

(2.59) 

<r(P*(x,a)) 
k x. rw       ^ /        P*(x,a) 

N„P*(x,a)    1- 

The normalized standard deviation of the Parzen estimate is then 

(2.60) 

<r(P*(x,a)) _ 1 

E[P*{x,a)\ ~~ E[P*(x,a)] Na \ 
NaP*[x,a)   1 - 

k 

1        k    /     „ ,      w       P*(x7a) 

P*(x,a)Na 

k 

^K\ 
'1 P*(x,a) 

) 
P*(x,a) 

(2.61) 

(2.62) 

(2.63) 

The Parzen estimate has a larger normalized standard deviation at points where the estimated 

probability is small. The Parzen density estimate converges to the true estimate at a rate 

proportional to -7h=>- 

The definition of Parzen window estimation can be generalized to higher dimensions by 

replacing the one dimensional smoothing functions by their d dimensional counterparts (see 

Section 2.4 for a d dimensional Gaussian). Though the definition of Parzen estimation is the 

same for any number of dimensions, the behavior of the algorithm can be very different. As 

the number of dimensions grows the number of data points required rapidly increases. In 

d dimensions, the window of support of a Gaussian smoothing function is an d dimensional 

sphere whose radius r is a function of its standard deviation. The volume of a d dimensional 

sphere of radius r is Vfjr
d, where Vd is a constant dependent only on the dimension. Assuming 

that all of the sample data is contained in a sphere of radius R, on average Na (^J data points 

will fall in a randomly chosen window. Generally, r is selected so that ^ < 1. As a result 

with increased dimension the number of points falling in a randomly chosen window drops 

exponentially and the normalized standard deviation of P* will increase rapidly. This implies 

that the Parzen density estimate will become very unreliable as dimensionality increases. 
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While in theory this could be remedied by increasing the size of the sample exponentially, 

things rapidly get out of hand. Empirical evidence argues against using Parzen estimation 

in manv more than six dimensions. 
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Chapter 3 

Empirical Entropy Manipulation and 

Stochastic Gradient Descent 

This chapter presents a, novel technique for evaluating and manipulating the empirical entropy 

of a distribution, called EMMA. The theory of entropy manipulation plays a critical role in 

the rest of this thesis and forms the algorithmic core in all of the applications. 

There are a. number of existing techniques that manipulate the entropy of a density. They 

each have significant theoretical and practical limitations that make them unsuitable for our 

purposes. We will begin with a description of these techniques, and two simple applications. 

The second part of the chapter describes a new procedure for evaluating empirical entropy, 

EMMA. We will present an efficient stochastic gradient scheme for extremizing the EMMA 

estimates. This scheme has applications outside of entropy manipulation. 

The final section of this chapter presents a tutorial application of EMMA. We will show 

how EMMA can be used to derive an information theoretic version of principal components 

analysis. 
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3.1    Empirical Entropy 

As we saw in the previous chapter, in many cases the true density of a random variable 

is not known. Instead one must make do with an estimate of the density obtained from a 

sample of the variable. Likewise, there is no direct procedure for evaluating entropy from a 

sample. A common approach is to first model the density from the sample, and then estimate 

the entropy from the density. This divides the problem into manageable parts which can be 

solved separately. 

By far the most popular density model for entropy calculations is the Gaussian. This is 

based on two considerations: (1) finding the Gaussian that fits the data best is very easy 

(see Section 2.3.1) and (2) the entropy of the Gaussian can be directly calculated from its 

variance. The entropy of a Gaussian distribution is 

h(X) = g^x - ij)log(g,i,(x - ^j)dx 

-I. 
CO 

oo 

gi,(x 

E 
1(£ 
2 

(i) 

<!/• 

Il\ lntr  1                        1 
1 (x - v)2 

Mi r{^) 2       V 

+ -log(27rV') 

dx 

1      1 
= 2 + 2log(2W>) 

= 2los(e)+ 2log(27r^' 

= 77 log(2e7rV>)  • 

(3.1) 

(3.2) 

(3-3) 

(3.4) 

(3.5) 

(3.6) 

The entropy of a Gaussian is a function of its variance and is not a function of its mean. 

Wider Gaussians have more entropy and narrower Gaussians have less. There is a simple 

procedure for finding the empirical entropy of a Gaussian distribution: compute the variance 

of the sample and evaluate (3.6). 

The equivalence between the log of variance and entropy can be used to reformulate well 

known signal and image processing problems as entropy problems. Since the logarithm is a 

monotonically increasing function, any technique that maximizes or minimizes the variance 

of a signal can be viewed as an entropy technique. Examples include principal components 

analysis, where variance is maximized, and least square solutions to matching problems, 
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where variance is minimized. There is however one significant caveat. Variance maximization 

is only equivalent to entropy maximization if the density of the signal involved is Gaussian. 

When this assumption is violated it is possible to reduce entropy as variance is increased. 

All but a very few of the techniques that manipulate the entropy of a signal assume that the 

signals are Gaussian or another exponential distribution (Linsker, 1988; Becker and Hinton, 

1992; Bell and Sejnowski, 1995). We will discuss these techniques in Section 7. 

Principal Components Analysis 

There are a number of signal processing and learning problems that can be formulated as 

entropy maximization problems. One well known example is principal components analysis. 

The principal component of a d dimensional distribution is a d dimensional vector. Given a 

density X every vector v defines a new random variable, Yv = X ■ v. The variance along an 

axis v is the variance of this new variable: 

Var(Yv) = EX[(X ■ v - EX(X ■ v)f]   . (3.7) 

The principal component v is the vector for which Var(Yv) is maximized. 

In practice neither the density of X nor Yv is known. The projection variance is computed 

from a sample a of points from X, 

Var(Yv) « Vara(Yv) = Ea[(X ■ v - Ea[X ■ v})2}  . (3.8) 

We can then define a vector cost function, 

C(v) = -Vara(Yv)  , (3.9) 

which is minimized by the principal component vector. There are many schemes for finding 

the principal component of a density. One of the more elegant accomplishments of linear 

algebra is the proof that the first eigenvector of the covariance matrix of X, ipx, is the 

principal component vector. 

Under the assumption that A" is Gaussian we can prove that the principal component is 

the projection with maximum entropy. First, every projection of a Gaussian is also Gaussian. 
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Second, the entropy of a Gaussian is monotonically related to variance. Therefore, the Yv 

corresponding the axis of highest variance is a Gaussian with the highest possible entropy. 

Moreover, principal components analysis finds the axis that contains the most information 

about A. The mutual information between X and Yv is 

I{X,Yv) = h(Yv)-h(Yv\X)  . (3.10) 

This equation has two components. The first implies that Yv will give you more information 

about X when Yv has a lot of entropy. The second can be misleading. Since knowing A" 

removes all of the randomness from Yv, h(Yv\X) is negative infinity. This is not particularly 

bothersome precisely because relative entropy is relative. Only the differences between rel- 

ative entropies are significant. The variable YV1 yields more information about X than YV2 

when 

/(A,i;1)>/(x,i;2) (3.ii) 

h(YVl) - h(YVl \X) > h(YV2) - h(YV2\X) (3.12) 

h(YVl) > h(YV2) . (3.13) 

We can conclude that the principal component axis carries more information about a distri- 

bution than any other axis. 

Function Learning 

There are other well known problems that can be formulated within the entropy framework. 

Let us analyze a simple learning problem. Given a random variable A' we can define a 

functionally dependent RV, Y = F{X • v) + ??, which we assume has been perturbed by meas- 

urement noise. We are given samples of the joint occurrences of the RVs: a = [...{xa,ya}...]. 

How can we estimate v'1 Typically this is formulated as a least squares problem. A cost is 

defined as the sum of the squares of the differences between predicted ya = F(xa ■ v) and the 

actual samples of Y', 

C(v)=     J2    (Va-F(xa.v))2  . (3.14) 
{xa,ya}£a- 

The cost is a function of the estimated parameter vector v.  The sum of squared difference 

can be justified from a log likelihood perspective (see Section 2.3.1).  If we assume that the 
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noise added to Y is Gaussian and independent of Y then the log likelihood of v is: 

log(£(v)) =     £     log{p(Y = ya\Y = F(xa-v))) (3.15) 
{xa,ya}ea 

=     £     log(gi>(ya-F(xa-v))) (3.16) 
{xa.ya}€a 

= -     £    (ya-F(xa-v))2 + k , (3.17) 

where k is a constant value independent of v. The v that minimizes the sum of the squares 

is also the v that makes the data observed most likely. For most problems like this, gradient 

descent is used to search for v. 

Finally we can show that minimizing cost maximizes mutual information. We showed in 

Section 2.3.1 that log likelihood is related to sample entropy: 

log(£(vj) = -±-ha(Y\Y) « ~h(Y\Y)  . (3.18) 

The mutual information between Y and Y is 

I(Y,Y) = h(Y)-h(Y\Y) . (3.19) 

The first term is not a function of v. The second is an approximation of log likelihood— 

minimizing C(v) maximizes I(Y,Y). 

Non-Gaussian Densities 

There is a commonly held misconception that mutual information techniques are all equivalent 

to simple well known algorithms. Contrary to the impression that the above two examples 

may give, this is far from the truth. Entropy is only equivalent to least squares when the 

data is assumed to be Gaussian. The approach to alignment and bias correction that we 

will describe in the next chapters does not and could not assume that distributions were 

Gaussian. We will show that if the data were Gaussian our alignment technique would 

reduce to correlation. 

There are a number of non-Gaussian problems that can be solved using entropy or mutual 
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information. Bell has shown that signal separation and de-correlation can be thought of as 

entropy problems (Bell and Sejnowski, 1995). Bell's technique can be derived both for 

Gaussian and non-Gaussian distributions. Bell shows that the Gaussian assumption leads to 

a well known and ineffective algorithm. When the signals are presumed to be non-Gaussian, 

the resulting algorithms are much more effective. Many compression and image processing 

problems clearly involve non-Gaussian distributions. 

In theory, empirical entropy estimation can be used with any type of density model. The 

procedure is the same: estimate the density from a sample and compute the entropy from the 

density. In practice, the process can be computationally intensive. The first part, maximum 

likelihood density estimation, is an iterative search through parameter space. The second, 

evaluating the entropy integral, may well be impossible. For example, there is no known 

closed form solution for the entropy of a mixture of Gaussians. The entropy integral can 

however be approximated as a sample mean: 

h(X) « hb(X) = Eb[log(p(X))]  , (3.20) 

where Eb[ ] is the sample mean taken over the sample b, p{) is the estimate for the sample 

density and hb(X) is the sample entropy first introduced in Section 2.3.1. The sample mean 

converges toward the true mean at a rate proportional to 1/y/Ph {Nb is the size of b). Based 

on this insight, two samples can be used to estimate the entropy of a distribution: the first 

is used to estimate the density, the second is used to estimate the entropy. 

While the two sample approach can be used to estimate entropy, it is not a practical 

algorithm for entropy manipulation. In the two applications above, changes in the parameter 

vector effect the densities that are being approximated. As the search through parameter 

space adjusts the parameter vector a new sample must be drawn, a new density estimated, 

and the derivative of entropy evaluated. If estimating the density is itself a complex search 

process, the search for the correct parameter vector can take an unbearably long time. 

3.2    Estimating Entropy with Parzen Densities 

In this section we will describe a technique that can effectively estimate and manipulate the 

entropy of non-Gaussian distributions.  The basic insight is that rather than use maximum 
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likelihood to estimate the density of a sample, we will instead use Parzen window density 

estimation (see Section 2.4.3). The Parzen scheme for estimating densities has two significant 

advantages over maximum likelihood: (1) since the Parzen estimate is computed directly from 

the sample, there is no search for parameters; (2) the derivative of the entropy of the Parzen 

estimate is simple to compute. 

In the following general derivation we will assume that we have samples of a random 

variable X, and we would like to manipulate the entropy of the random variable Y = F(X, v). 

The entropy, h(Y), is now a function of v and can be manipulated by changing v. Since there 

is no direct technique for finding the parameters that will extremize h(Y) we will search the 

parameter space using gradient descent. The following derivation assumes that Y is a vector 

random variable. The joint entropy of a two random variables, /?.(l'i,l"2), can be evaluated 

by constructing the vector random variable, W = [Yi, Y2]
T and evaluated h(W). 

The form of the Parzen estimate constructed from a sample a is 

P*(y,«) = TrE9*{y-Va) , (3.21) 

where the Parzen estimator is constructed with Gaussian smoothing functions. Given P*(y, a) 

we can approximate entropy as the sample mean, 

h*(Y) = Eb[log(P*(Y,a))] (3.22) 

4E
(O

^'(?A«))  , (3-23) 
Nb ybeb 

computed over a second sample b (h*(X) is the EMMA estimate of empirical entropy). 

In order to extremize entropy we must calculate the derivative of entropy with respect to 

v. This may be expressed as 

jLjf(Y') = — V  ^*£a dv94'(yb       Va) /ß 24) 
dv ' Nb ttb £i/«eaflty.(y&-ya) 

and, after differentiating the Gaussian, 

—h*(Y)) = — V ^v<-ea9+(yb ~ Va^ (yb ~ -ia^  1^W' ~ Va^ (3 9,5) 
dv ^'iefc T,yaea 9AVb ~ Va) 
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This expression may be written more compactly as follows, 

rh*w = w^^WyiyhVa){m~y*?*'1!-^"~lJa)'        (3-26) ClV
 b yb€bVa€a 

using the following definition: 

I2ya£a 9AVb - Va) 

Wy(yb, IJa) takes on values between zero and one. It will approach one if yb is significantly 

closer to ya than any other element of a. It will be near zero if some other element of a is 

significantly closer to yb. Distance is interpreted with respect to the squared Mahalonobis 

distance (see (Duda and Hart, 1973)) 

D4,(y) = yT4-ly . 

Thus, Wy(yb,ya) is an indicator of the degree of match between its arguments, in a "soft" 

sense. It is equivalent to using the "softmax" function of neural networks (Bridle, 1989) on 

the negative of the Mahalonobis distance to indicate correspondence between yb and elements 

of a. 

Equation 3.26 may also be expressed as 

d h*(Y) 4EE WV(W» y*) i^D+ly» - y*) ■ (3-28) 
ybebVa€a dvUyi,~ NB^^ryyyb'ya> dv2 

In this form it is apparent that to reduce entropy, the parameters v should be adjusted such 

that there is a reduction in the average squared distance between points which W indicates 

are nearby. 

Before moving on, it is worth reemphasizing that for most density models -£h{Y) is very 

difficult to compute. The general derivation of the derivative of entropy is much more complex 

than the Parzen derivation: 

dv dv Nb Vbtb 

59 



EffiARTMftlä.   EMPIRICAL ENTROPY MANIPULATION AND STOCHASTIC GRADIENT DESCENT 

d 1 v-1»' 

_ i y7kp(y^«)-d± + Tap(y^a)-d± (331) 
Nhy£b P{Vb,a) 

The numerator of the derivative has two components. The first, ^-p(y&, a) • ^, is the change 

in entropy that results from changes in the sample b. The second, -^p(yi,,a) ■ ^, is far more 

problematic. The second component is a measure of the change in the density estimate that 

results from changes in the sample a. In the Parzen framework the two components of the 

derivative collapse into a single term and can be directly computed from the samples. In the 

maximum likelihood framework p{yb,a) is a complex function of the sample. Since there is 

no closed form function that computes the density estimate from the sample, computing its 

derivative can be very difficult. 

3.3    Stochastic Maximization Algorithm 

The variance maximization/minimization applications described above (principal compon- 

ents analysis and learning) are deterministic procedures. Starting from an initial guess, 

gradient descent uses the derivative of cost to repeatedly update the parameter vector. Two 

different runs that start from the same initial parameters will end up with the same final 

parameters. Our justification for using probability and entropy to analyze these problems 

is purely convenience. There is nothing random about these problems once the samples are 

drawn. One of the benefits of understanding the probabilistic interpretation of these problems 

is that we can introduce randomness into our solutions and understand its effect. Here is a 

simple example: we want to know the average of a large sample of data. Without knowing 

anything else, it would make sense to sum over the entire sample. But, if we needed only 

a rough estimate of the average, significant computation could be saved by averaging over 

a subset of the sample. Furthermore, knowledge of the sample variance would allow us to 

compute the size of the subsample needed to estimate the mean to a given precision. 

A similar analysis can be applied to principal components analysis or function learning. 

The cost of a particular parameter vector is computed by summing over an entire sample 

as we did in Equation 3.14.   But, when that sample is very large this expectation can be 
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approximated by a smaller random sample. The same argument applies to the gradient. 

Since the gradient is defined as an average over a very large sample it may make sense to 

approximate it over a smaller random sample. When we use random samples, both the error 

estimate and the gradient estimate are now truly random. For very large samples, accurate 

error/gradient estimates can be made without averaging over the entire sample. For problems 

where the gradient needs to be evaluated often, this can save significant computation. 

Though a random estimate of the gradient is cheaper to compute, it could be useless. 

Under what conditions does it make sense to use a random gradient estimate? The theory 

of stochastic approximation tells us that stochastic estimates of the gradient can be used 

instead of the true gradient when the following conditions hold: (1) the gradient estimate 

is unbiased; (2) the parameter update rate asymptotically converges to zero; (3) the error 

surface is quadratic in the parameters (Robbins and Munroe, 1951; Ljung and Söderström, 

1983; Haykin, 1994). The first condition requires that on average the estimate for the gradient 

is the true gradient. The second insures that the search will eventually stop moving about 

randomly in parameter space. In practice the third condition can be relaxed to include most 

smooth non-linear error surfaces; though there is no guarantee that the parameters will end 

up in any particular minimum. 

Returning our attention to equations (3.22) and (3.26), notice that the both the calcu- 

lation of the EMMA entropy estimate and its derivative involve a double summation. One 

summation is over the points in sample a and another over the points in b. As a result the cost 

of evaluation is quadratic in sample size: 0{NaNb). We will present an experiment where 

the derivative of entropy for an image containing 60, 000 pixels is evaluated. While the true 

derivative of empirical entropy could be obtained by exhaustively sampling the data, a ran- 

dom estimate of the entropy can be obtained with much less computation. This is especially 

critical in entropy manipulation problems, where the derivative of entropy is evaluated many 

thousands of times. Without the quadratic savings that arise from using smaller samples 

entropy manipulation would be impossible. 

For entropy manipulation problems involving large samples we will use stochastic gradient 

descent. Stochastic gradient descent seeks a local maximum of entropy by using a stochastic 

estimate of the gradient instead of the true gradient. Steps are repeatedly taken that are 

proportional to the approximation of the derivative of the mutual information with respect to 

the parameters: 
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Repeat: 

a <r- {Na samples drawn from y} 

b <— {Ni, samples drawn from y} 

dh 
V <r- V + A—- 

dv 

where ^ is the derivative of entropy evaluated over samples a and b, v is the parameter to be 

estimated, and the parameter A is called the "learning rate". The above procedure is repeated 

a fixed number of times or until convergence is detected. In most problems the initial value 

of A is reduced during the search. In subsequent chapters we will describe experiments where 

samples of 50 or less can be used to effectively find entropy maxima. 

Stochastic approximation does not seem to be well known in the computer vision com- 

munity. We believe that it is applicable to a number of cost minimization problems that 

arise in computer vision. Stochastic gradient descent is most appropriate for tasks where 

evaluation of the true gradient is expensive, but an unbiased estimate of the gradient is easy 

to compute. Examples include cost functions whose derivative is a sum over all of the pixels 

in an image. In these cases, stochastic gradient search can be orders of magnitude faster 

than even the most complex second order gradient search schemes. In the experimental sec- 

tion (Chapter 6) of this thesis we will briefly describe joint work where an existing vision 

application was sped up by a factor of fifty using stochastic approximation. 

Convergence of Stochastic EMMA 

Most of the conditions that insure convergence of stochastic gradient descent are easy to ob- 

tain in practice. For example, it is not really necessary for the learning rate to asymptotically 

converge to zero. At non-zero learning rates the parameter vector will move randomly about 

the minimum/maximum endlessly. Smaller learning rates make for smaller excursions from 

the true answer. An effective way to terminate the search is to detect when on average the 

parameter is not changing and then reduce the learning rate. The learning rate only needs 

to approach zero if your goal is zero error, something that no practical system can achieve 

anyway. A better idea is to reduce the learning rate until the parameters have a reasonable 

variance and then take the average parameters. 
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The first proofs of stochastic approximation required that the error be quadratic in the 

parameters. More modern proofs are more general. For convergence to a particular optimum, 

the parameter vector must be guaranteed to enter that optimum's basin of attraction infinitely 

often. A basin of attraction of an optimum is defined with respect to true gradient descent. 

Each basin is a set of points from which true gradient descent will converge to the same 

optimum. Quadratic error surfaces have a single optimum and the basin of attraction is the 

entire parameter space. Non-linear error spaces may have many optima, and the parameter 

space is partitioned into many basins of attraction. When there is a finite number of optima, 

we can prove that stochastic gradient descent will converge to one of them. The proof 

proceeds by contradiction. Assume that the parameter vector never converges. Instead it 

wanders about parameter space forever. Since parameter space in partitioned into basins of 

attraction it is always in some basin. But since there are a finite number of basins it must 

be in one basin infinitely often. So it must converge to the optimum of that basin. 

One condition will give us more trouble than the others. The stochastic estimate of the 

gradient must be unbiased. It is not true that the sample approximation for empirical entropy 

is unbiased. Moreover, we ha,ve been able to prove that it has a consistent bias: it is too 

large. In Section 2.4.3 we described the conditions under which the Parzen density estimate 

is unbiased. When these conditions are met, a number of equalities hold: 

p(X = x)=   lim   P*(x,a) (3.32) 

= E{ae{x)}[P'(x,a)] (3-33) 

E {ae{xy\ 
I 

— Y, R(x -x") 
ISa Xa£a 

(3.34) 

= Ex[R(X-x)]  . (3-35) 

Here E{ae{x}}[P*(x,a)] denotes the expectation over all possible random samples of size Na 

drawn from the random variable X. Assuming the different samples of X are independent 

allows us to move the expectation inside the summation. The true entropy of the RV A" can 

be expressed as 

h(X) = -Ex[log E{ae{X}}[P*(x,a)]]  . (3.36) 

We can define a similar statistic: 

h*(X) = E{be{x},ae{x}}[h*(X)} (3.37) 
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= -E{bG{xhae{x}}[Eb[logEa[R(xb - xa)]}} (3.38) 

= -Ex[E{ae{x}}[log(P*(x,a))]] . (3.39) 

h*(X) is the expected value of h*(X).   Therefore, h*(X) provides an unbiased estimate of 

h*(X). Jensen's inequality allows us to move the logarithm inside the expectation: 

h(X) = -Ex[logE{a€{x}}[P*(x,a)}] (3.40) 

< -Ex[E{ae{x}}[log{P*(x,a))]] (3.41) 

< h*(X)  . (3.42) 

The stochastic EMMA estimate is an unbiased estimator of a statistic that is provably larger 

than the true entropy. Intuitively, overly large estimates arise when elements of b fall in 

regions where P*(x, a) is too small. For these points the log of P*(x, a) is much smaller than 

it should be. 

How then might we patch the definition of EMMA to remedy the bias? Another statistic 

that is similar to entropy is 

h(X) = -Ex\p(X)} = - I" p(x)2dx  . (3.43) 
J — <x> 

h(X) is a measure of the randomness of X (we will define h(X) shortly). Strongly peaked 

distributions have large negative values for h . For widely spread uniform distributions 

h approaches zero. Using the well known inequality, x — 1 > log(x), we can show, 

h(X) = -        p(x)2dx (3.44) 
J — oo 

< - r p(x)log(p(x))dx (3.45) 
J — CO 

< h(X) (3.46) 

Parzen window density estimation can be used to construct a stochastic measure 

h(X) = -Eb[P*(X,a)]  . (3.47) 
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The expectation of h(X) is h(X): 

-E{be{xhae{x}][h(X)} = -E{be{XUe{x}}[Eb[P*(X,a)}] (3.48) 

= -Ex[E{ae{x}}[P*(X,a)]] (3.49) 

= -Ex[p(X)} (3.50) 

= h(X)  . (3.51) 

Further simplifying,   

h[X) = -Er=x[Ez=x[R(x - x)]] (3.52) 

is an expectation over a pair of events from the RV A'. On average h is far too negative when 

p(X) is large. 

We have now defined two alternative statistics for which inexpensive unbiased estimates 

are available: h(X) and h*(X). These statistics bound the true entropy above and below, 

h(X) < h(X) < h*{X)  . (3.53) 

h* is on average too large and h is on average too small. Instead of using either, we have 

had good success using a third estimate, 

h(X) = -Eb[T(xbja)]  , (3.54) 

where 

™=     3=<l+miy.)-l   otherwise ' (3'55) 
V Pmin 

The T function is designed so that both T(x,a) and <fT^;°') are continuous. See Figure 3.1 

for a plot of the T function. The intuition behind h is that we use h* whenever possible, and 

for those sample points where P*{x,a) has a large standard deviation, we use h instead. The 

standard deviation of the Parzen density estimate is highest at points where the probability 

density is lowest, so we use h where P*(x,a) is below pmin (see Section 2.4.3). The variable 

Pmin allows us to continuously vary the h estimate from the two extremes of h and h*. 
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Figure 3.1: Plot of the functions x T(x) (which is labeled up), x log(x), and x (x — 1). Two 
different values for pmin are plotted: 0.1 and 0.8. Notice that smaller values of pmin cause the 
approximation of x log(x) to be very good. The difference between the two functions when 
pm;n = 0.1 is almost unnoticeable. 

Other Stochastic Search Techniques 

Non-linear stochastic gradient descent is commonly used in the neural network literature, 

where it is often called the LMS rule. It was introduced there by Widrow and Hoff (Widrow 

and Hoff, 1960) and has been used extensively with good results. Since a stochastic estimate 

for the gradient of error is much cheaper to compute than a true estimate of the gradient, 

for many real problems LMS is faster than all other gradient techniques. The textbook by 

Haykin (Haykin, 1994) discusses the use of such algorithms by the neural network community. 

An excellent discussion of stochastic approximation appears in the textbook by Ljung and 

Söderström (Ljung and Söderström, 1983). 

Simulated annealing is a related method that has been used in optimization problems 

which have many local minima (Kirkpatrick et ah, 1983). These minima can "trap" gradient 

techniques far from the optimal solution. Simulated annealing performs a random, though 

usually local, search through parameter space. At each step a random modification to the 

parameters is proposed and the new cost is evaluated. If the new cost is lower than the 

previous cost the parameter modification is accepted. If the difference in cost is positive, the 

modification is accepted probabilistically.  The probability of acceptance is proportional to 

66 



3.3.   STOCHASTIC MAXIMIZATION ALGORITHM AI-TR 1548 

the negative exponential of the difference, 

exp( — 7) ,, _„x 
PacceAd) = -J!Y-Li    , (3-56) 

where d is the difference between the new and the old cost and t is a temperature that 

controls the likelihood that a bad modification is accepted. Simulated annealing is based on 

the insight that physical systems, like iron, invariably find good energy minima when heated 

and then cooled slowly. The process of physical annealing is basically a gradient search 

perturbed by thermal noise. The thermal noise provides the energy to kick physical systems 

out of unfavorable local minima. The parameter t is an analog of physical temperature, it is 

initially set to large values and is gradually "cooled" during learning. In some cases it can 

be proven that with the right annealing schedule simulated annealing will converge to the 

global optimum. 

Stochastic gradient descent can effectively penetrate narrow local minima which trap 

gradient techniques. Alignment applications can often have many narrow local minima which 

arise because of false matches between the high frequency components in the model and 

image. Because these false matches are based on features which are small the local minima 

are narrow in pose space. We have found that narrow local minima, which can trap gradient 

techniques, can be overcome using stochastic gradient descent. 

We believe that stochastic approximation serendipitously combines efficient computation 

with effective escape from local minima. 

3.3.1    Estimating the Covariance 

In addition to the learning rate A, the covariance matrices of the smoothing functions R are 

important parameters of EMMA. These parameters may be chosen so that they are optimal 

in the maximum likelihood sense. This is equivalent to minimizing the cross entropy of the 

estimated distribution with the true distribution (see Section 2.4.3). Our goal is to find the 

parameters that minimize empirical entropy. 
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For simplicity, we assume that the covariance matrices are diagonal, 

V' = DIAG(^,(7^... (3.57; 

Following a derivation almost identical to the one described in Section 3.2 we can derive an 

equation analogous to (3.26), 

d 

doi. 

1 h*(Y) = 7TEE Wy(yb, ya)    -      ^ - 1 A' b yb€byaea °k.J \ <Tk 

(3.58) 

where [y\k is the kth component of the vector y. This equation forms the basis for a method 

of stochastic maximization of likelihood. 

Repeat: 

A <— {Na points drawn from y} 

B f- {At points drawn from y} 

ak^(7k + X'^-h*(Y)    Vfc 
dak 

The above procedure is very similar to the one described in Section 3.3.   During entropy 

manipulation, it is possible to interleave covariance updates with parameter updates. 

3.4    Principal Components Analysis and Information 

As a demonstration, we can derive a parameter estimation rule akin to principal components 

analysis that truly maximizes information. This new EMMA based component analysis 

(ECA) manipulates the entropy of the random variable Yv = X ■ v under the constraint that 

IvI = 1. For any given value of v the entropy of Yv can be estimated from a sample of X as: 

h*{Yv) = jr'52lo9\W^ 9i'^Jh ~ Va' A h yb& 
Na Va£a 

1 /   1 
7T E /o# kr E 94>{xb v - xa ■ v) 

(3.59) 

(3.60) 
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where ij) is the variance of the Parzen smoothing function.   Moreover we can estimate the 

derivative of entropy: 

l-h*{Yv) = ^- E E wv(y^y«) i> - s/°)|> - y«] {3M) 

= ^Y,Y.wv(yb,ya)-(yb-ya)(*b-xa) . (3.62) 

Let us decompose the derivative into parts which can be understood more easily. We will 

first analyze the second part of the summand: (yb - ya)(xb - xa). Ignoring the weighting 

function Wyij)~
l we are left with the derivative of some unknown function f{Yv): 

r/W^D»-^-^) (3-63) 
dv b       a 

= NbNaEb[Ea[(yb - ya)(xb - xa)]}  . (3.64) 

What then is f{Yv)1 The derivative of the squared difference between samples is: 

-^(Vb ~ Vaf = 2(yb - ya)-^{xb ■ v - xa ■ v) (3.65) 

= 2(yb-ya) — [(xb-xa)-v] (3.66) 

= 2(yb-ya)(xb-xa)   . (3.67) 

So we can see that 

f(Yv) = NbNaEb[Ea[(yb - ya)
2}} (3.68) 

is the expectation of the squared difference between pairs of trials of l'„. 

Recall that PCA searches for the RV Yv that has the largest variance: Ea[(ya - Ea[ya])2] = 

Vara(Yv). Interestingly the expected squared difference between a pair of trials is precisely 

twice the variance: 

C(v) = Eb[Ea[(yb-ya)
2}] (3.69) 

= Eb[Ea\y
2

b - 2yayb + yl]] (3.70) 

= Eb[y
2

b + Ea[2yayb + yl]} (3.71) 
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ECA - 
PCA ■ 

Figure 3.2: A scatter plot of a sample from a two dimensional Gaussian density. The sample 
contains 200 points. The principal axis and the ECA axis are also plotted as vectors from 
the origin. The vectors are nearly identical. 
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(3.73) 

(3.74) 

(3.75) 

Without the weighting term, IF^-1, ECA would find exactly the same vector that PCA does: 

the maximum variance projection vector. However the derivative of ECA does not act on all 

points of Yv equally. Recall that Wy(ya,yb) is a measure of the distance between yb and ya. 

It is large when yb is significantly closer to ya than any other element of a. As a result ECA 

maximizes variance in a local way. Points that are very far apart are forced no further apart. 

Another way of interpreting (ECA) is as a type of robust variance maximization. Points that 

might best be interpreted as outliers, because they are very far from the body of other points, 

play a very small role in the minimization. These robust characteristic stand in contrast to 

PCA which is very sensitive to outliers. 

For densities that are Gaussian, the maximum entropy projection is the first principal 

component. In simulations ECA effectively finds the same projection as PCA. Figure 3.2 

shows a sample of data and the PCA and ECA principal components. Since this density 

has a larger variance along the horizontal axis, both the ECA and PCA axes point along the 

horizontal axis. Our ECA code take roughly 10 seconds to run on Sun SparcS workstation. 
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Figure 3.3: A scatter plot of a 400 point sample from a two dimensional density. The density 
is a mixture of two horizontally stretched Gaussians. The PCA and ECA principal axes are 

also plotted as vectors from the origin. 

This is comparable to the time it takes to run PCA. 

In general, PCA does not find the highest entropy projection of non-Gaussian densities. 

For more complex densities the PCA axis is very different from the entropy maximizing 

axis. Figure 3.3 shows a density for which the PCA and ECA axes are very different. The 

PCA axis, which is vertical, spreads the points in the sample as far apart as possible. The 

ECA axis, which is oblique, spreads nearby points in the sample as far apart as possible. 

The resulting densities, YPCA and YECA, are graphed in Figure 3.4. The PCA density is 

very tightly peaked, the ECA density is broadly spread out. Though the final variance 

of YPCA is larger, 2.005 vs. 1.626, the entropy of the YECA distribution is much higher, 

h*{YpCA) = -0.17 and II*(YECA) = 1.61. 

Linsker has argued that the PCA axis separates the clusters of a distribution (Linsker, 

1988). To justify this claim, he uses figures much like Figure 3.3 and Figure 3.4. These 

graphs show the PCA axis projecting points from separated clusters so that they remain 

separate. It is then proposed that the PCA axis is useful for cluster classification of high 

dimensional data. In other words, that high dimensional data can be projected clown into a 

low dimensional space without perturbing the cluster structure. In general this is not true. 

PCA only separates clusters when the variance between clusters is higher than the variance 

within clusters. 
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Figure 3.4: The Parzen density estimates of YPCA and YEGA- 

Ironically, it is the minimum entropy projection that should separate clusters well. Let 

us assume that each cluster is generated from a prototypical point that has been perturbed 

by random noise. If there is very little noise, the sample points associated with a cluster 

prototype will be clustered together tightly. The resulting density is sharply peaked around 

the cluster prototypes and has low entropy. Additional noise acts to spread out each cluster, 

adding entropy to the density. Most of the entropy in this density arises from the noise, not 

the clusters. An entropy maximizing algorithm will find a projection vector that maximizes 

the projection of the noise. On the other hand, an entropy minimizing algorithm should, if 

possible, find a projection that is perpendicular to the noise. ECA can be used both to find 

the entropy maximizing (ECA-MAX) and minimizing (ECA-MIN) axes. 

Figure 3.5 shows a distribution where the noise, or spread, of the clusters is perpendicular 

to the axis that separates the clusters. As a result, the PCA axis does not separate these 

clusters. The ECA axis shown is the minimum entropy axis (which is obtained by running the 

EMMA algorithm with a negative learning rate). The ECA-MIN axis separates the clusters 

much better than the PCA axis (see Figure 3.6). 

To provide further intuition regarding the behavior of ECA we have run ECA, PCA, and 

two related procedures BCM and BINGO on the same density. BCM is a learning rule that 

was originally proposed to explain development of receptive fields patterns in visual cortex 

(Bienenstock et ah, 1982). More recently it has been argued that the rule finds projections 

that are far from Gaussian (Intrator and Cooper, 1992).   Under a limited set of conditions 
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Figure 3.5: A scatter plot of a 400 point sample from a two dimensional density. The density 
is a mixture of two horizontally stretched Gaussians. The PCA and ECA minimum entropy 

axes are also plotted as vectors from the origin. 

BCM finds the minimum entropy projection. BINGO was proposed to find axes along which 

there is a bimodal distribution (Schraudolph and Sejnowski, 1993). 

Figure 3.7 displays a 400 point sample and the five different projection axes found by 

the algorithms discussed above discussed above. The density is a mixture of two clusters. 

Each cluster has high kurtosis in the horizontal direction. The oblique axis projects the data 

so that it is most uniform and hence has the highest entropy; ECA-MAX finds this axis. 

Along the vertical axis the data is clustered and has low entropy; ECA-MIN finds this axis. 

Interestingly because the vertical axis has high variance, PCA finds the entropy minimizing 

axis. BCM, while it may find minimum entropy projections for some densities, is attracted to 

the kurtosis along the horizontal axis. The horizontal axis neither minimizes nor maximizes 

entropy. Finally, BINGO successfully discovers that the vertical axis is very bimodal. The 

densities of the different projections is shown in Figure 3.8. 

3.5    Conclusion 

This chapter has presented a new technique for estimating the entropy of a distribution 

called EMMA. Provided the density being approximated is smooth, we have proven that 

the technique will converge to the correct entropy estimate.   Moreover we have presented 
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Figure 3.6: The Parzen density estimates of YPCA and YECA from the previous graph. 

a computationally efficient stochastic technique for manipulating entropy. For reasonable 

sample sizes, the technique is not guaranteed to optimize true entropy. Instead it optimizes 

a very similar statistic that retains all of the salient characteristics of entropy. 

We have also described a simple application of EMMA. EMMA enables us to find low 

dimensional projections of higher dimensional data that minimize or maximize entropy. 
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Figure 3.7: A scatter plot of a 400 point sample from a two dimensional density. Each cluster 
has very high kurtosis along the horizontal axis. See text for description of projection axes. 
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Figure 3.8: The densities along various projection axes. 
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Chapter 4 

Matching and Alignment 

This chapter is perhaps the most important in this thesis. Previous chapters have presented 

the mathematics and algorithms that underly the computation of empirical entropy. We 

have already seen that empirical entropy can be used to define a new algorithm for finding 

the most informative projection of a distribution. This chapter will show that matching 

and alignment can also be formulated as an entropy problem. In addition, we will discuss 

the intuition behind our framework and suggest some simplified schemes that reflect these 

intuitions. Throughout this chapter a number of synthetic alignment problems will drive our 

discussions. 

We will begin with a rederivation of correlation as a maximum likelihood method. This 

derivation will make clear the assumptions under which correlation will work, and when it 

may fail. We will then attempt to generalize correlation so that it will work with a wider set of 

inputs. While this generalization is theoretically straightforward it will prove computationally 

intractable. 

Dropping our focus on correlation, we will define an intuitive approach to alignment 

which is efficiently computable. Using this intuition we will then define an approximation to 

a maximum likelihood technique that is both concrete and computable. Finally we will draw 

a parallel between this technique and mutual information. Experimental data from synthetic 

alignment problems will help us evaluate the proposed alignment techniques. 

This chapter will conclude with an entirely different motivation for the use of mutual 
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information in alignment. We will show how the alignment problem can be thought of as 

a Minimum Description Length problem (Rissanen, 1978; Leclerc, 1988). This formulation 

will naturally focus on the task of coding efficiency and entropy minimization. A very similar 

set of alignment equations will arise from these considerations. 

4.1    Alignment 

We are given two signals of time or space: u(x) and v(y). We will call u(x) the model. 

Often it is a description of a physical object that has been computed with great care. For 

example, in one of our experiments the model is an accurate three dimensional description of 

a skull. The second signal, v(y), is an image of the model. In general the form and even the 

coordinate systems of the model and image can be very different. For example, one of our 

3D models is a collection of three dimensional points and normals; the corresponding image 

is a two dimensional array of intensities. It is assumed that v(y) is an observation of u(x), 

for example that v(y) is a picture of the skull u(x). 

The relationship between u(x) and v(y) is based on the physics of imaging. The process 

of constructing an observation has two separate components. The first component is called 

a transformation, or pose, denoted T. It relates the coordinate frame of the model, x, to 

the coordinate frame of the image, y. The transformation tells us which part of the model 

is responsible for a particular pixel of the image. The second component is the imaging 

function, F(u(x),q). The imaging function determines the value of image point v(T(x)). In 

general a pixel's value may be a function both of the model and other exogenous factors. 

For example, an image of an object depends not only on the object but also on the lighting. 

The parameter, q, collects all of the exogenous influences into a single vector. The complete 

imaging model is then: 

v(T(x)) = F(u(x),q) + r) , (4.1) 

or equivalently, 

v(y) = F(u(T-1(y)),q) + r,  , (4.L 

where ?/ is a random variable that models noise in the imaging process. 

For a number of practical problems, the transformation between a model and an image 

i i 
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Figure 4.1: Graph of u(x) and v(x) = u(x) + ?/ versus x. 

is not known.   Alignment is the process by which the correct transformation is extracted. 

Alignment can be a difficult problem for a number of reasons: 

• The imaging function F of the physical world can be difficult to model. 

• The exogenous parameters q are not necessarily known and can be difficult to find. For 

example computing the lighting in an image is a non-trivial problem. 

• The space of transformations, which may have many dimensions, is difficult to search. 

Rigid objects often have a 6 dimensional transformation space. Non-rigid objects can 

in principle have an unbounded number of pose parameters. 

A simple example can lend intuition to these definitions.    Let u(x) and v(y) be one 

dimensional signals. Let the transformation space be the space of all possible translations 

T(x) — x — ß  . 

Let the imaging function F be the identity function. Choosing ß = 0 leads to 

(4.3) 

v(x) = u(x) + r\  . (4.4) 

Figure 4.1 contains a graph of two signals that obey this relationship.   Though we show 

the image and model aligned, the correct alignment between v to u may not be known. 
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Figure 4.2: Graph of u(x) and v(x) = —u(x)2 versus x. 

In all of our synthetic experiments 10% random noise has been added to v1. Noise is of 

course an unavoidable reality of any real system. But more importantly the addition of noise 

demonstrates that the algorithms presented are numerically stable. 

More complex imaging functions are possible. For example, F might be non-linear 

F{u) = -u2   . 

Figure 4.2 contains a graph of u(x) and v(T{xj) = F(u(x)). 

(4.5) 

4.1.1     Correlation as a Maximum Likelihood Technique 

The search for the correct alignment can be cast as a maximum likelihood or variance min- 

imization problem (see Section 2.3.1). The probability of an image given the model, the 

transformation, the noise distribution, the exogenous parameters, and the imaging function 

is: 

p(v\u,T,ihq,F)=  l[p(ri = (v(T{xa))-F(u(xa),q)))   . (4.6) 
i'a£a 

1We use white noise that has been low-passed filtered to roughly 0.3 cycles per unit. The peak to peak 
amplitude of the noise is 10%. of the peak to peak amplitude of the signal. 
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In the above equation we have assumed that each pixel of v is conditionally independent. 

Conditional independence does not imply that the pixels are independent, just that if u, T, 77, q, 

and F are known the pixels are independent. Assuming that the noise is Gaussian, we can 

then compute the log likelihood of a transformation as 

log(£{T)) = log p(v | «, T, ?/, q, F) 

= J2 lo9 Pin = v(T(xa)) - F(u(xa),q)) 
xa6a 

= -h Y, WT{xa)) - F(u(xa),q)f 
xaEa 

n-k2E\(v(T(X))-F(u(X),q)f 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

« — koE v{T{X)f  -2E{v(T(X))F(u(X),q)] + E F(u(X),q)2     (4.11 

where ki and k2 are constants computed from the variance of the noise and the number of 

sample points. They play no role in the maximization. In (4.11) we have expanded the square 

of the difference to show that the log likelihood of a transformation has three components: one 

that arises from the variance of the model; a second that arises from the correlation between 

the image and the predicted image; and a third that arises from the variance of the predicted 

image. For problems where the variance of the image and predicted image are fixed, the best 

transformation is the one that maximizes the correlation between the actual and predicted 

image. 

For convenience we will define the cost of a transformation as 

C(T) = E  {v(T(X))-F{u(X),q)j' 

ex -log(l{T))  . 

(4.12) 

(4.13) 

The lowest cost transformation is the one that causes the model to match the image "best". 

As we did in the analysis of principal components and function learning, we have "inven- 

ted1' random variables: X, v(T(X)) and u(X). The random variable X ranges over points 

from the coordinate system of u where u(X) is defined. The random variables u(X) and 

v{T(X)) range over the values in the model and image. In reality there are no random pro- 

cesses involved in matching and alignment. The model and image are pre-determined and 

fixed. Alignment could proceed deterministically; the cost of a transformation being eval- 

uated directly from all of the points in the model and image.  We have chosen to interpret 
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the summation over pixels that arises in correlation as an expectation over a set of random 

variables. As a result the insights of probability and statistics can be brought to bear on 

these problems. 

4.1.2    Correlation and Mutual Information 

Alignment is very similar to the problem of function learning that we encountered in Sec- 

tion 3.1. Equation (3.15) is almost identical to (4.7). In both problems we are looking for a 

set of parameters that cause the inputs to model the outputs. Function learning attempts to 

find the best parameter vector v; alignment attempts to find the best transformation T. As 

we did for function learning, we can draw an analogy with sample entropy. The log likelihood 

of T is proportional to the conditional entropy of the image given the model, 

log(£(T)) = -±.hMT(X)) | u(X)7T^hq,F) . (4.14) 

This is not the EMMA estimate of entropy, but the conditional entropy of v under the 

assumption that v is conditionally Gaussian. For the problems described in Section 3.1 it 

was possible to show that entropy optimization led to maximum mutual information solutions. 

For this problem however, we cannot claim that maximizing log likelihood is equivalent to 

maximizing the mutual information between v and u. The mutual information 

I{v{T{X)),u{X)) = Hv{T{X)))-h{v(T{X))\u{X),T,ri,q,F) , (4.15) 

includes both a conditioned and unconditioned entropy. For some types of transformations 

h(v(T(X))) may change as T is varied. In these cases minimizing conditional entropy is not 

equivalent to maximizing mutual information. One must also maximize the unconditioned 

entropy. In our simple example, where only translation is varied and the signals are periodic, 

unconditioned entropy does not change as T is varied. 

Returning to the first synthetic example, we can plot C(T) (from (4.12)) versus transla- 

tion. Figure 4.3 graphs C(T) for the two signals from Figure 4.1 (we have assumed periodic 

boundary conditions on the signals). We can see that the cost has a very strong minimum at 

the true translation of 0 pixels. 
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Figure 4.3: On the left is a plot of image and model that are identical except for noise. On 
the right is a plot of C(T) versus translation. There is a significant minimum at the correct 

aligning translation of 0 pixels. 
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Figure 4.4: On the left is a plot of image and model that are related non-linearly. On the 
right is a plot of C(T) versus translation. There is no minima at the aligning translation of 
0 pixels. In fact minima exist at incorrect translations. 

Correlation works very well at matching together u and v when the imaging model and 

exogenous parameters are known. In many cases however we may be faced with a situation 

where F and q are unknown. In some cases alignment problems can still be solved by 

assuming that the imaging function is the identity function. This assumption is not effective 

when aligning the non-monotonically related signals shown in Figure 4.2. Figure 4.4 graphs 

C(T) versus translation for these two signals. Notice that each of the actual minima are at 

incorrect translations. 

In general C(T) cannot be used to align signals related by an unknown non-linear trans- 

formations. C(T) can however be generalized to work with signals that have been transformed 

linearly. Rather than minimize the squared difference between signals, we can instead min- 

imize the squared difference between signals that have been normalized. A normalized signal 
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Figure 4.5: Graph of u(x) and v(x) = 3u(x) - 2 versus x. 

is one with a mean of zero and a standard deviation of one and can be computed as 

u(x)-E[u(X)} 
u(x) = 

a(u(X)) 
(4.16) 

The normalized version of a signal is invariant to multiplicative and additive changes to the 

original. The sum of the squared differences between the normalized signals, NC(T), can 

be computed directly as one minus the Normalized correlation between the signals u and v. 

Normalized cost is defined as: 

vrm _ 1      EMXHT(X))} - Ea[u(X)]EaWT(X))] 
1     j (7a(«(A'))<7a(t7(T(A'))) 

As a shorthand we have abbreviated sums over the coordinates x as expectations and vari- 

ances. 

Normalized cost can be used on signals like the ones shown in Figure 4.5 (F(u) = 3u — 2). 

A plot of NC(T) versus translation is identical to Figure 4.3. In some cases, normalized cost 

can be applied to signals transformed by non-linear monotonic functions. Note however that 

the two signals shown in Figure 4.2 are related by a non-monotonic function and cannot be 

accommodated in this way. In these examples translation does not effect the mean or the 

standard deviation of the signals. As a result, normalized cost will not produce a convincing 

minimum where cost alone does not. 
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We may still wish to align models and images that are related by non-monotonic functions. 

In this case alignment can be performed by jointly searching over the space of possible imaging 

functions, exogenous parameters and transformations. Probability can be used to motivate 

this procedure. We can evaluate p(v | u, T, N: q, F) when F and q are unknown by integrating 

out the unknown variables. The probability of the image would then be, 

p(v \u,T,ri)= [ [ H p(V = v(T(xa)) - F(u(xa),q)) p(F) p(q) dF dq  . (4.18) 

This equation integrates over all possible imaging functions and all possible sets of exogenous 

variables. We are not aware of any approach that has come close to evaluating such an 

integral. It may not be feasible. Another possible approach is to find the imaging function 

and exogenous variables that make the image most likely, 

p(v | u, T, N) « max J[ p{i] = v(T(xa)) - F{u{xa), q)) p(F) p{q)  . (4.19) 
XaEa 

Here we have assumed that the integral in Equation 4.18 is approximated by the component 

of the integrand that is maximal. The approximation is a good one when a particular F and 

q are much more likely than any other. 

Using (4.19) we can define an alignment procedure as a nested search: (1) given an 

estimate for the transformation, find F and q that make the image most likely; (2) given 

estimates for F and q, find a new transformation that makes the image most likely. Terminate 

when the transformation has stabilized. In other words, a transformation associates points 

from the model with points in the image; for every u(x) there is a corresponding v(T(x)). A 

function F and parameter vector q are sought that best model the relationship between u(x) 

and v(T(x)~). This can be accomplished by "training" a function to fit the collection of pairs 

{v(T(xa)),u(xa)}. Algorithms for finding F and q are very similar to the those for density 

approximation and learning described in Chapter 3. Notice also that that alignment with an 

unknown imaging model is very similar to entropy maximization. Entropy maximization is 

a nested search for a density estimate and parameters. Alignment is a nested search for an 

imaging model and a transformation. We will return to this analogy shortly. 

Many of the pitfalls of density approximation as described in Chapter 2 apply to function 

approximation as well. Before we can hope to learn the function F we must first make a set 

of assumptions about the form of F. Without these assumptions discontinuous estimates for 
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F, which fit the data perfectly well but are very unlikely, can prevent convergence. One way 

to prevent, or discourage, this behavior is to formulate a strong prior probability over the 

space of functions, p(F). 

In many cases the search for an imaging function and exogenous parameters can be 

combined. For any particular F and q, another function Fq{u(x)) - F(u(x),q) can be 

defined. Combining functions like this is a common technique in both "shape from shading" 

and "photometric stereo" research. Both techniques compute the shape of an object from 

the shading that is present in an image or images. Rather than independently model the 

exogenous variable (the lighting direction) and imaging function (the reflectance function) 

a combined function is represented and manipulated. The combined function is called a 

reflectance map (Horn, 1986). It maps the normals of an object directly into intensities. 

The three dimensional alignment procedure we will describe manipulates a similar combined 

function. 

How might Equation 4.19 be approximated efficiently? It seems reasonable to assume 

that for most real imaging functions similar inputs should yield similar outputs. In other 

words, that the unknown imaging function is continuous and piecewise smooth. An efficient 

scheme for alignment could skip the step of approximating the imaging function and attempt 

to directly evaluate the consistency of a transformation. A transformation is considered 

consistent if points that have similar values in the model project to similar values in the 

image. By similar we do not mean similar in physical location, as in \xa — xb\, but similar 

in value, |u(a;0) - u(xb)\ and \v(T(xa)) - v(T{xb))\. One ad-hoc technique for estimating 

consistency is to pick a similarity constant e and evaluate the following sum: 

Consistency!(T) = - ]>>(r(^)) - v(T(xa))f   , (4.20) 

where the sum is over xa <E a and xb G b such that \u(xb)-u(xa)\ < e and xa ^ xb. Consistency 

is flawed in a number of ways. For instance, there are no obvious clues of picking e. We can 

replace the "all or nothing" nature of the e test with a more gradual discrimination: 

Consistency^) = -   £   cM(u(xb) - u(xa))(v(T(xb)) - v{T(xa))f  , (4.21) 

where g^, is a Gaussian with standard deviation, 0. In order to minimize this measure, points 

that are close together must be more consistent, and those further apart less so.   Another 
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problem with any consistency measure is that it is too aggressive; consistency is maximized 

by constancy. The most consistent transformation projects the points of the model onto a 

constant region of the image. For example, if scale is one of the transformation parameters, 

one entirely consistent transformation projects all of the points of the model down to a single 

point of the image. Though there are a number of problems with consistency that need to be 

addressed, it will serve as source of intuition as we analyze different approaches. 

We now have two alternatives for alignment when the imaging function is unknown: a 

theoretical technique that may be intractable (4.19), and an outwardly efficient technique 

that has a number of important difficulties (4.21). One would like to find a technique that 

combines the best feature from each approach. Perhaps the complex search for the most 

likely imaging function, Fq, can be replaced with a simpler search for a consistent imaging 

function. 

One type of function approximator that maximizes consistency is known as a nearest 

neighbor function approximator (Duda and Hart, 1973). A nearest neighbor function ap- 

proximator FN(U, a) is constructed directly from a sample a. The approximator's value at a 

point u is the value of the point which is nearest in the sample: 

F/v(w, a) = v(T(x))   such that x = argmin \u — u(xa)\   . (4.22) 
xa£a 

Fi\r can be used to estimate the likelihood of a model as we did in (4.19). The nearest 

neighbor formulation can be much more efficient than a. naive implementation of (4.19), since 

there is no need to search for Fq. The model, image, and transformation define FN directly. 

The nearest neighbor function approximator plays a role in the likelihood computation 

that is very similar to the role that Parzen density estimation plays in entropy estimation 

(see Sections 2.4.3 and 3.2). Unlike the Parzen estimate, the nearest neighbor approximation 

is not continuously differentiable. A similar though differentiable version is called a weighted 

neighbor approximator2: 

F*(«, a) = ZaR(u-uMMTM)   . (4.2:3) 

The weighting function R usually has a maximum at zero, and falls off asymptotically away 

2This technique is also known as kernel regression. 
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from zero. A common choice for R is the Gaussian density function g^ with standard deviation 

V'. We can re-write F* as, 

a 

where W is the soft nearest neighbor function first defined in Section 3.2, 

g^i'Ux - u2) 
Wa{ui,u2) = 

Eaflty'fal -U{xa)) 

(4.24) 

An estimate for the log likelihood is then, 

log(£(T)) = -hYlHTixa)) - F*(u(xa),a)Y 

= -hZ >(T(xa)) - J2 Wa(u(xa), u(xb))v(T(xb)) 

= -h E 
a     L   b 

^Wa{u(xa),u(xb))v(T(xa))-YlWanxa),u{xb))v(T(xb)) 

-**E J2Wa(u(xa),u(xb))(v(T(xa))-v(T(xb))) 

(4.25) 

(4.26) 

2 

(4.27) 

(4.28) 

Step (4.27) relies on the fact that 

J2Wa(u(xa),U(xb)) = l  , 
b 

where xa G a. The log likelihood of a transformation using a weighted neighbor function 

approximation is very similar to the intuitive consistency measure (4.21). In addition its 

derivative bears a striking resemblance to the derivative of the EMMA estimate (see (3.26)): 

pog(i(T)) (4.29) 

^ Efe {g*("M - u(xb))Hv(T(xa)) - v(T{xb)))(±v(T(xa)) - &v(T(xb)))) 

= -fc2 E E ^(«(^.)1 «(^))2 (('"(T(^)) - Kn^))^(«(n^)) - ^(T(xt)))) (4.31) 
a      b \ ' 
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Figure 4.6: On the left is a plot of image and model that are identical except for noise. On 
the right is a plot of the logarithm of weighted neighbor likelihood versus translation. 
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Figure 4.7:   On the left is a plot of image and model that are related non-linearly.   On the 
right is a plot of the logarithm of weighted neighbor likelihood versus translation. 

Weighted neighbor likelihood can be used to evaluate the cost of different translations. 

Figure 4.6 shows a graph of weighted neighbor likelihood versus translation for the initial 

pair of signals, u(x) and v(x) = u{x) + ??. Figure 4.7 contains a similar graph for the second, 

non-linear experiment, u(x) and v(x) = (u(x) — 2)2 + ?/. Both graphs show a strong minimum 

at the correct alignment of the signals. We can conclude that weighted neighbor likelihood 

can be used in situations where neither cost nor normalized cost would work. 

The parallel between EMMA and weighted neighbor likelihood is more than structural. 

EMMA estimates the density of the sample directly and uses it to compute the derivative of 

entropy with respect to the parameter vector; weighted neighbor likelihood estimates the ima- 

ging function directly and uses it to compute the derivative of log likelihood with respect to the 

transformation. More importantly both techniques manipulate the entropy of the of the joint 

distribution u and v. EMMA can be used to evaluate the joint entropy h*(v(T(x)),u(X)); 

weighted neighbor likelihood evaluates the conditional entropy h(v(T(x)) \ u(X)) under the 
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assumption that p(v(T(x))\u(X),a) = g,p(v(T(x)) -F*{u(x),a)) (see Sections 2.3.1 and 4.1.2 

for commentary on the equivalence of log likelihood and sample entropy). 

We can relax the constraint that v be conditionally Gaussian by using EMMA to estimate 

the conditional entropy: 

h(v(T(x))\u(Xj) « h*(u(x)) - h*(v{T(x)),u(X)) • (4-32) 

The first term is the entropy of the model. It is not a function of the transformation. 

Why are these two seemingly unrelated concepts, weighted neighbor likelihood and con- 

ditional entropy, so closely related? We can gain some intuition about this equivalence by 

looking at the joint distribution of u and v. For any particular transformation we can sample 

points [u(xa),v(T(xa))]T and plot them. Figure 4.8 shows the joint samples of the signals 

from Figure 4.1 when aligned. The thin line in the plot is the weighted neighbor function 

approximation of this data; it is a good fit to the data. There is a noticeable clumping, or 

clustering, in the data. These clumps arise from the regions of almost constant intensity in 

the signals. There are four large regions of constant intensity and four clusters. 

When these almost identical signals are aligned they are strongly correlated. Large val- 

ues in one signal corresponds to large values of the other. Conversely, small values in one 

correspond to small values in the other. Correlation measures the tendency of the data to lie 

along the line x = y (normalized correlation measures the tendency of the data to lie along 

some line of positive slope). Figure 4.9 shows the joint samples of the two signals shown in 

Figure 4.2. These signals are not linearly related or even correlated, but they are functionally 

related. 

Weighted neighbor likelihood measures the quality of the weighted neighbor function 

approximation. In both of these graphs the points of the sample lie near the weighted neighbor 

function approximation. Moreover, in both of these graphs the joint distribution of samples 

is tightly packed together. Points are not distributed throughout the space, but lie instead 

in a small part of the joint space. This is the hallmark of a low entropy distribution. 

We can generate similar graphs for signals that are not aligned. Figures 4.10 and 4.11 show 

the same signals except for the fact that the image has been shifted 30 units. For these shifted 

signals the structure of the joint distribution is destroyed.  The weighted neighbor function 
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Figure 4.8: Samples from the joint space of u(x) and v(x) = u(x) + ?/• A small black square 
is plotted for every pixel in the signals. The X-axis is the value of u(x). The Y-axis is the 
value of v(x). The clumping of points in clusters is caused by the regions of almost constant 
intensity in the images. The thin line plotted through the data is the weighted neighbor 
function estimate. 

approximation is a terrible fit to the data. As a result the weighted neighbor likelihood of 

these signals is low. 

Alternatively we could look directly at the distributions. When the signals are aligned the 

distributions are compact. When they are misaligned the distributions are spread out and 

haphazard. Or in other words, aligned signals have low joint entropy and misaligned signals 

have high joint entropy. 

This suggests an alternative to weighted neighbor likelihood: the EMMA approximation 

of joint entropy. Graphed below are the EMMA estimates of joint entropy, h*(w), versus 

translation for each signal alignment problems discussed. Figure 4.12 shows a graph of joint 

entropy for the two signals that are nearly identical. Figure 4.13 shows a graph of joint 

entropy for the model and the non-linearly transformed image. In both case the graphs show 

strong minima at the correct aligning translation. 
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Figure 4.9: Samples from the joint space of u(x) and v(x) = — u(x)2 -f ?/. 
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Figure 4.10:   Samples from the joint space of u(x) and v{x) = u(x + 30) + rj.   Unlike the 
previous graph these two signal are no longer aligned. 
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Figure 4.11:  Samples from the joint space of u{x) and v(x) = —u{x + 30)2 + rj.  The two 
signals are not aligned. 
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Figure 4.12: On the left is a plot of image and model that are identical except for noise. On 
the right is a plot of the estimated joint entropy versus translation. 
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Figure 4.13:  On the left is a plot of image and model that are related non-linearly.  On the 
right is a plot of estimated joint entropy versus translation. 
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4.2    Weighted Neighbor Likelihood vs. EMMA 

Weighted neighbor likelihood and EMMA are both smoothly differentiable functions that can 

be used to align signals when the imaging function is unknown. Qualitatively the EMMA 

estimate of joint entropy seems better. Joint entropy seems to have a wider basin in these 

synthetic experiments. 

If weighted neighbor likelihood and EMMA are so similar, why is there a difference? 

Recall that weighted neighbor likelihood measures the conditional entropy of the image given 

the model. It does this under the assumption that the conditional distribution of the image 

is Gaussian. Weighted neighbor likelihood use the data around a point to estimate the mean 

of a Gaussian. The log likelihood of that point is then proportional to the squared difference 

from this mean. In general log likelihood calculations are very sensitive to outliers. Outliers 

are points that are, because of noise or measurement error, perturbed and land far from 

where they should have. Recall that the log likelihood of a sample is the sum of the log 

likelihoods of each point in the sample. As a result a single outlier can ruin a sample that 

would otherwise have had a high likelihood. 

A more reasonable measure might introduce a bound on the penalty for a single point. 

Once a single point moved beyond a certain distance from the local mean the cost would 

no longer increase. Calculating likelihood in this way is closely related to the concept of a 

robust statistic 

EMMA on the other hand does not assume that the conditional distribution of the image 

given the model is Gaussian. Instead it approximates the density non-parametrically. EMMA 

can handle situations where there are multiple peaks in the conditional distribution. While 

there is a likelihood penalty if a group of points are perturbed away from the local mean, 

it is not a function of the distance from the mean. Once these points move outside the 

effective range of the smoothing function there is no additional penalty. EMMA's robust 

nature prevents it from getting swamped by a few outliers in the joint distribution. This 

gives it a greater ability to deal with the distributions that arise from misalignments between 

model and image. 

In the next sections we will describe a number of other situations where EMMA is better 

than weighted neighbor likelihood. 
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4.2.1    Non-functional Signals 

Up until this point our analysis of alignment has assumed that there exists an imaging 

function that relates the model and the image. For at least two classes of problems there will 

be no imaging function at all. The first arises from a common situation in computer vision: 

occlusion. The second arises when the model does not contain all of the information required 

to predict the image. In both cases no single function, regardless of exogenous variables, can 

be used to predict the image from the model. 

Figure 4.14 shows a graph of our original pair of signals, except that v(x) has now been 

corrupted by an occlusion. Occlusion proves to be particularly bothersome for the alignment 

techniques we have proposed. For example, the basic assumption behind normalized cost 

has been violated; the occluded signal is not a linearly transformed version of the model. 

In addition, a quick glance at the joint space shows that the assumption behind weighted 

neighbor likelihood has also been violated (see Figure 4.15); even when the signals are aligned, 

there is no longer any function that relates u(x) and v(x). Figure 4.16 show a graph of 

weighted neighbor likelihood versus translation. The global minimum no longer coincides 

with the correct translation. 

In some cases EMMA can be used to align partially occluded signals. Joint entropy does 

not suffer from the strong assumption that the signals are functionally related. Though part 

of the signal may be corrupted, the remaining parts retain their low entropy relationship. 

Figure 4.17 show a plot of joint entropy for the occluded pair of signals. 

The simplest example of non-functional signals often arises when the model and the image 

are swapped. Whenever the function between the model and the image is non-monotonic, 

the relationship between the image and the model is non-functional. The non-monotonically 

related signals shown in Figure 4.2 are an example. Figure 4.18 shows the joint space of the 

swapped signals and a weighted neighbor function approximation. The function fit to this 

joint space is a terrible approximation of the data. The quality of the function approximation 

points out an important limitation of weighted neighbor likelihood. While normalized cost 

is a symmetric comparison metric, weighted neighbor likelihood is not. It may seem at first 

that this is an unimportant distinction. It is not. Symmetric measures allow us to match 

images to models as well as models to images. This can be critical when it is not possible to 

construct a, detailed model. 
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Figure 4.14: Graph of u(x) and v(x) where v{x) has been perturbed by noise, and a portion 

of it occluded. 

Both joint entropy and mutual information are symmetric measures. A plot of EMMA 

entropy for the swapped signals is identical to Figure 4.13. 

A more complex example of non-functional signals arises when both the model and the 

image are functions of some third unmeasurable signal. Call this signal z(x). There are 

now two imaging functions, one that creates the model u(x) = Fu(z(x),qu), and another that 

creates the image v(T(x)) = Fv(z(x),qv). Medical registration, which we describe in some 

detail in the next chapter, is a clear example of a two sensor problem. In medical registration 

one seeks an alignment of signals from two types of sensors (for example a CT scan and an 

MRI scan). Neither gives perfect information about the object, and neither is completely 

predictable from the other. 

The two sensor problem can be simulated by transforming our original signal by two 

different non-linear transforms. Using the original signal from Figure 4.1 we can define 

Fu(z) = sin(2z) and Fv(z) - z2. The resulting aligned distribution should fall approximately 

along a line that looks like Figure 4.19. The actual distribution is shown in Figure 4.20. Here 

too EMMA shows a strong minimum at the correct alignment of model and image (see 

Figure 4.21). 
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Figure 4.15: Samples from the joint space of u{x) and v(x) where the image has been occluded. 
Though these signals are aligned the the weighted neighbor function is a terrible fit to the 
data. The data is segregated into two parts: the linearly related part that arise from the 
non-occluded signal, and the constant part that projects to the occluded part. 

Mutual Information versus Joint Entropy 

Recall that conditional entropy is not a measure of the dependence between two signals (see 

Section 2.2). Conditional entropy h(v\u) can be small for two different reasons: h(v) is itself 

small, or v is dependent on u. Mutual information is a better measure of dependence. For 

the simple examples described in this chapter h(v \ u) can be used alone as a measure of 

alignment. In more complex examples, where the model can change scale or project on a 

limited part of the image, h(v) must be taken into account. In general we will solve alignment 

problems by maximizing mutual information. 
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Figure 4.16: Graph of weighted neighbor likelihood versus translation where v(x) has been 

occluded. 
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Figure 4.17: Graph of EMMA joint entropy estimate versus translation for the occluded pair 

of signals. 
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Figure 4.18:  Samples from the joint space of u(x) and v(x) = u(x)2 + ?/.   The roles of the 
model and the image have been reversed. 

Figure 4.19: Graph of the function defined by u = sin(2z) and v = z2 as z varies from -1.5 
to 1.5. 
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Figure 4.20: Samples from the joint space of from the simulated two sensory data. 
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Figure 4.21: Graph of EMMA joint entropy estimate versus translation for the non-functional 

pair of signals. 
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4.3    Alignment Derivation 

Let us derive the equations and algorithms used for alignment by maximization of mutual 

information. We wish to maximize the mutual information between model and image signals. 

This requires a search of the aligning transformation space. We will use the stochastic 

gradient descent algorithm described in Section 3.3. 

The derivative of mutual information is 

^I(u(x)MT(x))) = ±h(u{x)) + A.h{v(T(x))) - pi(u(x)XT(x))) . 

Since h(u(x)) is not a function of X", it drops from our calculations. Using the EMMA entropy 

estimate, 

-±-I(u{x)MT(x)) «      -i- J2   E Wviv^v,) (Vi - Vif^^vi - Vj) (4.33) 

-^E   E ^»(«''■' »"i) ("'i " u,i)Tfc1^(«'.- " ^J)  •    (4-34) 

The following definitions have been used: 

Wv(vi,v^ 
T,zkeA9l>v(vi-vk, 

uv \ "41 tl/j , 
Exk6A 94>uAw

t ~ Wk) 

m = u(xi) , iij = u(xj) , uk = u{xk) , 

Vi = v{T{xi)) , VJ = v[T(xj)) , vk = v{T{xk)) , 

Wi = [ui,Vi]T , Wj = [UJ,VJ]
T
 , and wk = [uk,vk]T   . 

We assume that the covariance matrices of the component densities used in the approximation 

scheme for the joint density are block diagonal, 

V'-^DIAGty^-1)  , 
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and we obtain an estimate for the derivative of the mutual information as follows 

d 

x,eBx3eA dl      1\B ~~7T> r~?A ai 

If we are to increase the mutual information, then the effect of the first term in the brackets 

may be interpreted as acting to increase the squared distance between pairs of samples that 

are nearby in image intensity, while the second term acts to decrease the squared distance 

between pairs of samples that are nearby in both image intensity and the model properties. 

It is important to emphasize that distances are in the space of values (intensities, brightness, 

or surface properties), rather than coordinate locations. 

The term -^{vi - Vj) will generally involve gradients of the image intensities and the 

derivative of transformed coordinates with respect to the transformation. In the simple case 

that T is a linear operator, we obtain the following outer product expression, 

4fv(T(xi)) = Vv(T(xi))xJ  . 
dl 

4.4    Matching and Minimum Description Length 

There is another entirely different motivation for using mutual information as a alignment 

metric. Alignment, and many other vision problems, can be reformulated as minimum de- 

scription length (MDL) problems (Rissanen, 1978; Leclerc, 1988). MDL can provide us with 

some new insight into the problem of alignment and help us derive a missing and often useful 

term in the alignment equations. 

The standard framework of MDL involves a sender and a receiver communicating de- 

scriptions of images. Given that the sender and the receiver have an agreed upon language 

for describing images, the sender's goal is to find a message that will accurately describe an 

image in the fewest bits. The concept of description length is clearly related to the code 

length introduced in Section 2.2. 

For the problem of alignment we will assume that the sender and the receiver share the 

same set of object models.   The sender's goal is to communicate an image of one of these 
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models. Knowing nothing else, the sender could simply ignore the models and send a message 

describing the entire image. This would require a message that is on average as long as the 

entropy of the image. However, whenever the image is an observation of a model a more 

efficient approach is possible. For example the sender could send the pose of the model 

and a description for how to render it. From these the receiver can reconstruct the part of 

the original image in which the model lies. To send the entire image, the sender need only 

encode the errors in this reconstruction, if there are any, and any part of the image that is 

unexplained by the model. Alignment can be thought of as the process by which the sender 

attempts to find the model pose that minimizes the code length of the overall message. 

The encoding of the entire image has several parts: (1) a message describing the pose; 

(2) a message describing the imaging function; (3) a message describing the errors in the 

reconstruction; and (4) a message describing the parts of the image unexplained by the 

model. The length of each part of the message is proportional to its entropy. We can assume 

that poses are uniformly distributed, and that sending a pose incurs some small uniform 

cost. The length of part (4) is the entropy of the image that is unexplained. Parts (2) and (3) 

can be interpreted in two ways. We can assume that the imaging function can be sent with 

a fixed or small cost. Part (3) is then proportional to the conditional entropy of the image 

given the model and imaging function. This is precisely what was estimated and minimized 

with weighted neighbor alignment. A second interpretation comes from EMMA. EMMA 

estimates the joint entropy of the model and image, h(u,v). The conditional entropy of the 

image given the model can be computed as h(v\u) = h(u, v) — h(u). Since the entropy of the 

model is fixed, minimizing the joint entropy minimizes the conditional entropy. In both cases 

entropy based alignment as proposed in the first part of this chapter minimizes the cost of 

sending parts (1), (2) and (3). MDL suggests that we must also minimize the entropy of the 

unmodeled part of the image. 

In the previous information theoretic formulation there was no concept of pixels or of 

the proportion of the image explained by the model. In fact, in the previous formulation the 

entropy of the explained part of the image could get larger as the model shrunk. For example, 

assume that the model covers a contiguous region of an image where most of the pixels have 

constant value. At the center of this region is a small patch containing varied pixels. Recall 

that the image is sampled at points that are projected from the model. Most of the model 

points will project into the region of constant intensity and a few will project onto the varied 

patch. The resulting distribution of image pixels, because it has many samples of the same 
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value, has fairly low entropy. If the model were shrunk to cover only the varied patch, then 

all of the points from the model would fall in the varied region. The new distribution of pixel 

values will have higher entropy. 

Can the mutual information between the model and the entire image be measured? This 

would be a more direct parallel to the MDL framework. MDL directs the sender to transmit 

the model and pose that will produce an encoding for the entire image that is shortest. As 

the model explains more, less of the image needs to be encoded directly. We can derive an 

approximation to mutual information between the model and the entire image. Let U and V 

represent the whole model and whole image respectively. The mutual information equation 

can now be rewritten, 

/([/, V) = h(U) + h(V) - h(U, V)  . (4.35) 

The dependence of h(U, V) on T is implicit in the above equation. 

Logically, the image can be split into two parts: Vm and Vm. Vm is the part of the image 

in which the model lies. Vm, is the unmodeled part of the image. We can define them as 

Vm = {v(y) such that u(T_1(y)) is defined}   , (4.36) 

and, 

Vih = V-Vm  . (4.37) 

It is assumed that the two parts of the image are independent. This allows us to split the 

entropies that involve V into two distinct parts, 

I(U, V) = h(U) + h(V) - h(U, V) (4.38) 

= h(U) + h(Vm, Vrn) - h(U, Vm, V;Ä) (4.39) 

= h(U) + h(Vm) + h(Vrn) - h(U, Vm) - h(V.m) (4.40) 

= h\U) + h{Vm)-h{llVm)  . (4.41) 

Step (4.40) relies on the assumption that Vm is independent of both Vm and U (i.e. that the 

background is independent both of the image of the object and the object). Equation 4.41 

directs us to maximize the entropy of the modeled part of the image, h(Vm), as well as 

minimizing the joint entropy of model and the image. 
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EMMA can estimate the entropy of a signal, but what is the entropy of an entire image? 

This is a very difficult question to answer. The entropy of an image is a function of the 

distribution of a vector random variable with between ten thousand and a million dimensions. 

Though the entropy of an image can be modeled as the the sum of the pixel entropies, this 

is guaranteed to be an overestimate of the true image entropy. 

One of the problems with mutual information alignment is that it does not tell us whether 

the object is present in the image or not. The principle of minimum description length should 

allow us to derive a decision threshold for the presence of an object. The object is present 

if the image is easier to encode with it than without it. Unfortunately this decision is highly 

dependent on the estimate of the entropy, or code length, of the explained part of the image. 

The naive overestimate of image entropy—that simply sums the entropies of the pixels—is 

not tight enough to determine the decision threshold correctly. An important area of open 

research is deriving a more reasonable estimate of the code length of an image. 

In previous derivations points were sampled from the model and projected into the image. 

Since we are now explicitly modeling the entropy of the image, we will sample from the image 

and project back into the model. The joint entropy is then, 

h(v(y)}u(T-\y))) = Ey[log p(v(y), «(T"1^)))] (4.42) 

= Jp(v(y),u(T-1(y)))logp{v(y)MT-1(y)))dy (4.43) 

= [ p[v(T(x)),u(x))log p(v(T(x)),u(x))A(T,x)dx (4.44) 

= Ex[A(T,x)logp(v(T(x)),u(x))]  . (4.45) 

Equation (4.44) involves a change of variables from y back into x. The correcting term A(T, x) 

plays the role of the Jacobian of the transformation, measuring the ratio of the area in the 

model as it projects into the image. For affine transformations the projected area is related 

to the model area by the determinant of the transformation. For projective transformations 

there will also be a term that arises from foreshortening. The mutual information is then 

I(U,V)nEb A{T,xb) 

/ +log(P*(u(xb),a)) \ 

+log(P*(v(T(xb)),a)) 

\ -log(P*({v(T(xb))M*b)},a)) ) 

(4.46) 

The mutual information between the whole model and image is the EMMA estimate of the 
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mutual information between the model and image signals weighted by the projected area of 

the model. This new formulation of mutual information includes a term which encourages 

the model to explain as much of the image as possible. The derivative 

±WV) E, 

( +log{P*(u(xb),a)) 

A(T, x ' dT +log(P*(v{T(xb)),a)) 

\ -log(P*({v(T(xb))Mxb)ha)) ) 

( +log{P*{u{xb),a)) \ 

+ +log(P*(v(T(xb)),a)) 

\ -log(P*({v(T(xb)),u(*b)M) I 

A. 
dT A(T,xb) 

(4.47) 

encourages the model to grow as large as possible. 

4.5    Summary 

In this chapter several motivations for the selection of mutual information as a measure of 

alignment have been presented. The primary existing measure of alignment, correlation, is 

rederived as a maximum likelihood technique which has a number of important weaknesses. 

The concept of maximum likelihood matching is then extended to define a more general 

measure of alignment. This measure, called weighted neighbor likelihood, can be interpreted 

as estimating the conditional entropy of an image given a model. While it is more general than 

correlation, weighted neighbor likelihood is still limited. It can be still further generalized 

yielding a technique called EMMA alignment. This technique explicitly estimates the mutual 

information between an image and model. A number of synthetic experiments demonstrate 

that mutual information is a very flexible measure of alignment. 

In the final section of this chapter the concept of minimum description length is used as 

yet another motivation for mutual information as an alignment measure. This alternative 

framework encourages the model to explain as much of the image as possible. 
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Chapter 5 

Alignment Experiments 

This chapter contains a number of experiments designed to demonstrate that alignment by 

maximization of mutual information is a practical technique. The previous chapter contained 

a very general definition of alignment. Though a procedure for adjusting the pose parameters 

during alignment was derived, many of the details regarding representations and implementa- 

tions were left out. Each experiment described in this chapter will include both these needed 

details and a general discussion of the experimental framework. 

By the end of this chapter we will have developed some familiarity with the application 

of EMMA alignment. The chapter will conclude with a section describing explicit limita,- 

tions of this approach. In addition to describing problems for which EMMA alignment is 

poorly suited, it will be emphasized that EMMA alignment by itself is not a complete object 

recognition system. 

For clarity the parameters and assumptions that underly EMMA alignment have been 

identified. We have broken the process of setting up an experiment into discrete steps that 

can be applied to a wide variety of alignment problems (see Table 5.1). Along with the 

description of each experiment we will include a similar table with a specific realization for 

each step. 
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Choose a model and image representation (i. e. define u() and 
v()). Define an interpolation scheme for sampling v() at non- 

integral coordinates. 
Choose a scheme for sampling the model (i.e. define x). 
Determine the space of possible aligning transformations and its 
concrete representation (i.e. define T). The definition of the 
random variables u{x) and v{T(x)) is now complete.  
Derive an expression for dv(y)/dy. 
Pick a metric for computing distances between pairs of samples 

ofu(x), v(T(x)), and {«(.T), V(T(X))}. 

Pick the variance for the component densities: ip. 

Choose a value for p,7 

Determine the number of samples used to estimate the distribu- 
tion, and the number used to estimate the entropy.  
Pick a parameter update rate, A. In general the update rate will 
decrease with time. _  

Table 5.1: The process for setting up an alignment. 

5.1    Alignment of 3D Objects to Video 

In our first experiment we will return to the example described in the introduction: alignment 

of a three-dimensional object to a video image. In all of our alignment experiments we will 

assume that the entire object has the same surface properties. We can then treat surface 

property as yet another exogenous variable. 

Following Table 5.1: 

1. Models are a collection of points that lie on the surface of the object. We chose this rep- 

resentation because it is capable of representing any shape including smoothly curved 

or irregular forms. It is equally capable of representing objects with flat faces such as 

polyhedra. The models have been constructed so the distribution of surface points is 

as close to uniform as possible. Associated with each surface point is the local surface 

normal, a unit vector perpendicular to the surface. The models used ha.ve between 7000 

and 65,000 points. Video images are represented as simple two dimensional arrays. 

2. The random variable x that is used to sample the model and image is defined from the 
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model. A trial of x is a randomly selected model point. The value of the trial is the 

3D location of that model point. We sample the points of the model uniformly. 

3. The transformation space is the space of rigid three dimensional translations and rota- 

tions followed by perspective projection. The overall transformation is a concatenation 

of rotations and translations each acting on the pre-defined "center" of the object. 

Because of self-occlusion, not every point on the model is visible. Visibility is determ- 

ined by a Z-buffer rendering of the model. Z-buffer rendering takes each point in the 

model and projects it into the image. When multiple points fall onto the same pixel, 

only the point that is nearest is considered visible. As pose changes, some points be- 

come visible and others become invisible. In theory Z-buffering needs be repeated every 

time the pose of an object changes. Unfortunately, Z-buffering takes time proportional 

to the size of the model. This cost is far larger than the cost of computing an estimate 

for the derivative of entropy. Since pose does not change much between iterations of 

gradient descent, it has proven sufficient to Z-buffer every 300 iterations. 

4. The derivative dv(y)/dy is the spatial gradient of the image. 

5. The metric used for comparing points sampled from the image is squared difference. 

The representation of joint events, w = {v{T x),u(x)}, is somewhat more complex. We 

will represent only two dimensions of the normal vector: the x and y components. Since 

the normal is always a unit vector, the z component is redundant. The joint events are 

therefore three dimensional vectors, two components from the model and one from the 

image. We will use Euclidean distance to measure the distance between joint events. 

6. Since we will be using diagonal covariance matrices for the smoothing functions, four 

variances are required. Three for the joint entropy and one for the image entropy. Based 

on maximum likelihood estimates from aligned objects, we have settled on a single set 

of smoothing parameters that we will use for all of our 3D alignment experiments. For 

the joint entropy, the variance of x and y components of the normal are both 0.3 and 

the variance for image intensity is 0.2. For the image entropy, the variance for image 

intensity is 0.15. Having a single set of parameters is for every experiment is possible 

in part because we have pre-normalized all images so that their variance is 1.0. 

7. We will use a value of 0.01 for pm.in. The alignment process shows very little sensitivity 

to pmin.   We have repeated a number of experiments with a pmin value of 0.1 and 
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1.0. Our results are not significantly different. Values that are more than a factor 

of 10 smaller than 0.01 cause the derivative of estimated entropy to be too noisy (see 

Section 3.3). This noise can prevent convergence to the correct pose. 

8. Rather than draw two different samples, we will use the cross-validation approximation 

(see Section 2.4.3). In all of our experiments we use a sample size of 25. 

9. Finally, we must choose a parameter update rate, A. Actually, since the units of ro- 

tation and translation are very different two update rates are necessary. Internally we 

represent rotations in radians and translations in millimeters. For an object with a 100 

millimeter radius a rotation of 0.01 radians about the center of mass can translate a 

model point up to 1 millimeter. A translation of 0.01 can at most translate a model 

point 0.01 millimeters. The derivative of mutual information with respect to a model 

point's position is a combination of a rotation and translation. A small step in the dir- 

ection of the derivative will move the model point up to 100 times further by rotation 

than translation. If there is only a single update rate a poor compromise must be made 

between the rapid changes that arise from the rotation and the slow changes that arise 

from translation. If the rotation update rate is reduced by a factor of 100 the model 

point will move approximately as far by rotation as it does by translation. Scale issues 

such as these do not arise when more complex gradient descent techniques are used, for 

example conjugate gradient descent or Levenberg-Marquardt. Unfortunately, neither 

of these techniques can use stochastic estimates of the gradient. Since our models have 

a radius that is on the order of 100 millimeters, we have chosen rotation update rates 

are 100 times smaller than translation rates. Most of our 3D alignment experiments 

proceed in two stages. In the first stage the rotation update rate is 0.0005 and the 

translation update rate is 0.05. After a number of iterations the update rates are then 

reduced to 0.0001 and 0.01 respectively. We have chosen a simple automatic descent 

procedure in an effort to simplify subsequent analysis of convergence. 

The realization of the basic framework is summarized in Table 5.2. 
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Define the model and image u{) and v(): u() contains points 
distributed on the surface of the object. Each point has an as- 
sociated normal. v() is the image of intensities.  
Sampling x: The sampling is determined by the distribution of 
surface points which is close to uniform, 
Transformation space T: The space of rigid 3D rotations and 
translations by perspective projection using an estimate for the 
camera parameters. 
Definition of dv(y)/dy: This is the intensity gradient. 
Distance metric: Euclidean distance. 
Variance, ip: Assuming diagonal covariance matrices, four dif- 
ferent variance are necessary, three for the joint entropy estimate 
and one for the image entropy estimate. The variances were 0.3, 
0.3, and 0.2 for the x component of the normal, y component of 
the normal, and image intensity. The variance was 0.15 for the 
image entropy. 
Minimum probability, pmi„.: 0.01. 
Number of samples: One sample of 25 using cross-validation. 
Update rate, A:   Rotation rate:  0.0005 for 3200 steps and then 
0.0001 for 3200 steps. Translation rate: 0.05 and then 0.01. 

Table 5.2: Summary of 3D to video alignment. 
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Figure 5.1: A typical image of the skull object. 

5.1.1    Alignment of Skull Model 

In our first experiment we will align a 3D skull model to a number of different images. The 

skull model was produced automatically from a Computed Tomography (CT) scan of a plastic 

skull1. The same plastic skull was then photographed in a number of different poses under 

natural lighting2. The skull model contains 65000 points. The video images are 240 by 320 

pixels. Figure 5.1 is an example video image of the skull. 

Figure 5.2 contains a representation of the shape of the skull model. It is an image 

displaying the distance from the camera to the visible points on the skull model. White is 

further and black nearer. This image is computed by projecting each model point into the 

image plane. The pixel to which the model point projects records the distance of the model 

point from the camera. There may, however, be a number of model points that project to the 

same image pixel. In this case, the depth of the model point which is nearest the camera is 

used. Since the model is constructed from a collection of points, it is not dense. As a result 

there are some pixels to which no model point projects. A few of these pixels, which remain 

white, appear throughout the model. 

thanks to Gil Ettinger and Ron Kikinis for providing the skull model. Their work on medical registration 
using this model is described in (Grimson et al., 1994). 

2Thanks to J. P. Mellor for providing the skull images. His work on registration is described in (Mellor, 
1995). 
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Figure 5.2: A depth map of the skull model. See text for description. 

We can use a Lambertian reflectance model to render a graphical picture of the skull. A 

Lambertian model relates the model normal and image intensity: 

v(Tx) = J2^-u(x)  , (5.1) 
i 

where the model value u(x) is the normal vector of a surface patch, /,; is a vector pointing 

toward light source z, and «; is proportional to the intensity of that light source. Figure 5.3 

shows a rendered version of the model in the same pose as Figure 5.1. To the human eye 

this sort of image is more readily interpretable than a depth map. We can bring to bear our 

substantial visual competence when the shape of an object is rendered as an image. From 

Figure 5.3 it is almost immediately clear that the pose of the object model is close to correct. 

There is however no simple relationship between the intensities of the video image and the 

rendered image. 

The goals of this first experiment is to answer three questions. (1) Can EMMA align a 

complex 3D object model to a number of different images taken under uncontrolled lighting? 

(2) How long does EMMA alignment take to run? (3) What is the range of poses from 

which a "correct" alignment can be obtained. Regarding this third point, we do not have 

true information about either the pose of the object nor the camera parameters of the video 

camera. The "correct" pose has been determined by inspection of the alignment results. We 

can however ask a related question about reliability. How far can the the object be perturbed 
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Figure 5.3: A rendered image of the skull model. 

away from the "correct" pose and have EMMA alignment reliably re-align it? 

To answer our first question, we must establish that in the six dimensional space of rigid 

transformations there is a maximum of mutual information at a plausible alignment pose. 

For each image the object model was initially adjusted so that it's pose was close to correct. 

This was done by eye. EMMA alignment was then used to pull the object into a "correct" 

pose. 

One scheme for assessing the quality of an alignment is to display the model pose and 

the video image together. This can be done by taking a random collection of model points 

and projecting them into the coordinate frame of the image. The pixels to which the model 

points project are then set to white. The nature of the alignment is readily apparent from 

such images. When the model and image are misaligned model points will project onto the 

background and the coverage of the object's image will be incomplete. When the model and 

image are correctly aligned there is close agreement between the occluding contours of the 

model points and the object's image. Figure 5.4 shows an initial incorrect pose in this way. 

Figure 5.5 shows the final pose obtained after running EMMA alignment. 

Figures 5.6, 5.7, and 5.8 show the final alignment obtained for three other images. Notice 

that in each of these images the boundaries of the skull are in close agreement with the outline 

of the model points. 
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Figure 5.4: Initial pose of the skull model before alignment. 

We would like to emphasize that in none of these experiments have we pre-segmented the 

image. The initial poses often project the model into regions of the image that contain a 

significant amount of clutter. EMMA reliably settles on a pose where few if any of the model 

points project onto the background. 

In answer to the second question, EMMA requires roughly 35 seconds on a Sun Sparc- 

Stationö for each of the alignments shown above. Run times are identical because we have 

chosen to use a fixed number of update iterations for each alignment experiment. In some 

cases an accurate alignment was obtained well before the full number of iterations had been 

completed. In others it appeared that the final alignment could have been improved if the 

number of iterations were increased. 

There are few if any principled results on the convergence of stochastic approximation. 

Convergence detection is a subtle issue. For example, EMMA does not make a direct estimate 

of the mutual information between model and image. During alignment only a stochastic 

estimate of the gradient is available. It may be possible to construct an ad hoc procedure 

that would be able to detect convergence. Alignment could then be continued until the pose 

estimate had converged. 

From an analysis of the program's memory access and computation patterns, we conclude 

that an implementation on a digital signal processor would be as much as 100 times faster 

than our current implementation.   One major issue is cache performance.  Because EMMA 
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Figure 5.5: Final pose of the skull model after alignment. 

randomly accesses each of the points in the image and model, much time is wasted flushing 

and refilling the cache. The cache on a general purpose processor is often fairly limited. Most 

digital signal processors include a large quantity of fast SRAM, eliminating the need for a 

cache. For random memory accesses a digital signal processor should be approximately 5 

times faster than a conventional computer. The inner loop of the EMMA derivative estimation 

procedure is dominated by simple floating point operations. Modern digital signal processors 

can execute these instructions 10 to 20 times faster than conventional computers. Together 

these advantages should lead to an overall improvement in speed of between 50 and 100. 

A number of randomized experiments were performed to determine the reliability, accur- 

acy and repeatability of alignment. This data is reported in Table 5.3. An initial alignment 

was performed to establish a base pose. This pose, shown in Figure 5.5, is used as a point 

of reference. A set of randomized experiments was performed where the base pose is first 

perturbed, and then EMMA is used to re-align the image and model. The perturbation is 

computed as follows: a random uniformly distributed offset is added to each translational 

axis (labeled AT) and then the model is rotated about a randomly selected axis by a random 

uniformly selected angle (A9). There were four experiments each including 50 random ini- 

tial poses. The distribution of the final and initial poses can be compared by comparing the 

variance of the location of the centroid, computed separately in X, Y and Z. Furthermore, the 

average angular rotation from the true pose is computed (labeled | A 6\). Finally, the number 

of poses that failed to converge near the correct solution is reported. The final statistics are 
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Figure 5.6: Final pose of the skull model after alignment. 

AT A0 INITIAL FINAL 

X Y Z <?X (Ty o-z o-.x ay <*Z |A0| |A0| 
±mm 0 mm 0 mm 0 % 

10 10 5.94 5.56 6.11 5.11 .61 .53 5.49 3.22 100 
30 10 16.53 18.00 16.82 5.88 1.80 .81 14.56 2.77 96 
20 20 10.12 12.04 10.77 11.56 1.11 .41 9.18 3.31 96 

[10,20] [20,40] 14.83 15.46 14.466 28.70 1.87 2.22 14.19 3.05 78 

Table 5.3:   Skull Results Table.    The final column contains the percentage of poses that 
successfully converged to a pose near the correct pose. 

only evaluated over the poses that converged near the correct solution. 

These experiments demonstrate that the alignment procedure is reliable when the initial 

pose is close to the "correct" pose. Outside of this range gradient descent, by itself, is not 

capable of converging to the correct solution. The capture range is not unreasonably small 

however. Translations as large as half the diameter of the skull can be accommodated, as 

can rotations in the plane of up to 45 degrees. Empirically it seems that alignment is most 

sensitive to rotation in depth. This is not terribly surprising since only the visible points play 

a role in the calculation of the derivative. As a result, when the chin is hidden the derivative 

gives you no information about how move the chin out from behind the rest of the skull. 

Finally, we have done a. number of experiments to demonstrate that EMMA alignment 
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Figure 5.7: Final pose of the skull model after alignment. 

can deal with occlusion. Figure 5.9 shows an initial and final alignment for an image that 

includes an artificial occlusion that covers the entire chin area. The final alignment is very 

close to the correct one despite the occlusion. Figure 5.10 shows an initial and final pose for a 

more complex occlusion. In this image we have replaced a rectangular window with another 

randomly chosen window of the image. The source of the rectangle is near the bottom of the 

image. In a number of experiments, we have found that alignment to occluded images can 

require more time for convergence. 
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Figure 5.8: Final pose of the skull model after alignment. 

(■■■I 

Figure 5.9:  An image including an artificial occlusion.  White spots denote the pose of the 
model. On the left is the initial pose, on the right is the final pose. 

Figure 5.10: An image including an artificial occlusion. White spots denote the pose of the 
model. On the left is the initial pose, on the right is the final pose. 
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5.1.2    Alignment of Head Model 

We have repeated many of the skull experiments with a three dimensional model of a hu- 

man head. This model was obtained from a Cyberware scan of the subject that was taken 

approximately two years before the video images3. A Cyberware scan is a complete three 

dimensional representation of the shape of the subject's head in cylindrical coordinates. The 

surface normals were computed from the surface by smoothing and differencing neighboring 

surface points. 

The experiments in this section are designed to answer two questions: (1) Will the same 

techniques and parameters work with two different types of models and images? (2) Is it 

possible to use the pose refinement procedure to track a moving object in a video sequence? 

Figure 5.11 shows an image of the head and a rendering of the model. 

How are the face experiments different from the skull experiments? Firstly, the face 

model is much smoother than the skull model. There really aren't any creases or points of 

high curvature. As a result it is much less likely that an edge-based system could construct 

a representation either of the image or the model that would be stable under changes in 

illumination. Secondly, the albedo of the actual object is not exactly constant. The face 

contains eyebrows, lips and other regions where the albedo is not the same. As a result this 

is a test of EMMA's ability to handle objects where the assumption of constant albedo is 

violated. Thirdly, not all of the occluding contours of the object are present in the model. 

The model is truncated both at the chin and the forehead. As a result experiments with this 

model demonstrate that EMMA can work even when the occluding contours of the image and 

model are not in agreement. 

In the previous experiment projecting points from the model into the image was sufficient 

to describe the model pose. Since the head model is very smooth and some occluding contours 

are missing simply projecting the model points into the image is not sufficient to determine 

the quality of an alignment. For our experiments with the head model we will display the 

original image, augmented with model points, alongside a rendered image of the model. 

Figures 5.11 and 5.12 show the model before and after alignment. In this experiment the 

model has been rotated 30 degrees around the vertical and translated 40 millimeters to the 

3Thanks to Ron Kikinis for providing the Cyberware scan and for allowing me to take the images of him. 
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Figure 5.11: An initial incorrect pose. The model has been rotated 30 degrees about the 
vertical and translated 40 millimeters to the right. On the left is an image of the head along 

with a collection of points projected from the model. On the right is a rendering of the model 
in the same pose. 

IX\ 

Figure 5.12: The final aligned poses. On the left is an image of the head along with a 
collection of points projected from the model. On the right is a rendering of the model in the 
same pose. 

right. Figures 5.13 and 5.14 show another experiment where EMMA alignment corrects for 

a 150 millimeter translation in depth. 

We have also tested EMMA alignment on a video sequence digitized from a video tape. 

The sequence was taken at the same time as the other images, though the camera and the 

lens were different. Ten frames were acquired from a video tape at 3 frames per second. The 

quality of the resulting images is very low. The images were degraded both by their storage 

on video tape and by the frame grabber that was used. It was somewhat surprising that these 

images worked nearly as well as the higher quality still frames. 

Motion in the video sequence was tracked by sequentially aligning the model to each of 

the frames. The starting pose for each frame was obtained by using the final estimated pose 

from the previous frame. The starting pose for the first frame was hand selected so that 

EMMA alignment could acquire a good initial alignment. The sequence and pose estimates 

are displayed in Figure 5.15. 
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HI 

Figure 5.13:  An initial incorrect pose.   The model has been moved 150 millimeters toward 

the camera. 

Figure 5.14: The final aligned poses. 
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Figure 5.15: Ten frames from a video sequence of RON'S head. 
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Figure 5.16: Bumps with Different Lighting, and their Edges 

5.1.3    Alignment of Curved Surfaces 

The third experiment is designed to explore the nature of the information that EMMA align- 

ment uses to detect the correct pose. The previous two experiments, because they are based 

on real data, can be difficult to analyze. We would like to determine which component of 

the information in the image and model is critical to alignment. For example, it could be the 

case that EMMA alignment relies implicitly on intensity edges to match model to image. Or, 

it could be the case that the occluding contours of the object are of critical importance. 

For this experiment we created a very simple, almost pathological, synthetic example. 
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Figure 5.17: Target Image, Final Model Pose, and Initial Model Pose 

The object is a set of three Gaussian shaped bumps in a flat patch of surface. This object in 

has no sharp edges and does not have a well defined occluding contour. Figure 5.16 shows 

ten different images of this object. Each image uses the same Lambertian reflectance model 

but has different illumination. Across the top row the light source moves gradually from left 

to right. In the second row the light source moves from top to bottom. Even for a simple 

Lambertian surface, image variation can be significant. Below this we show the output of a 

Canny edge detector run on the ten different images (Canny, 1986). The variation between 

the different edges extracted is quite striking. 

Figure 5.17 shows the target image on the left. Here the bumps axe inserted into an infinite 

plane. Also shown is a rendered version of a typical final and initial pose of the model. As in 

other experiments the rendered images of the model are made using a particular surface and 

lighting scheme; they are for visualization only and play no role in the alignment process. 

The black regions of the rendered image lie outside the borders of the model. Notice that 

the model's boundaries do not coincide with any discontinuities in the target image. Since 

there are neither stable edges nor usable occluding boundaries, we can conclude that EMMA 

alignment can proceed using only shading information. 

The bumps each have a sigma of 7mm (the bump is about 3 sigma or 21mm wide). The 

bump height is 20mm. Lying together in the same plane they take up an L shaped region that 

is 100mm by 100mm. The true pose is 1000mm away from the camera, and perpendicular to 

the camera axis. The camera, has a viewing angle of 18 degrees. This experiment proceeds 

exactly as in the previous three dimensional experiments. 

As we did with the skull model we performed an analysis of the reliability of the maxima 

of mutual information. These experiments summarized in Table 5.4. 
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AT A0 INITIAL FINAL SUCCESS 

X     Y     Z 0"Y ay   az crx ay   (Jz | A0| | A0| 
±mm 0 mm 0 mm 0 % 

10     10     25 30 5.21 5.82     19.97 15.41 .56 .45      9.73 5.68 100 

15     15    25 20 8.75 8.95     14.61 9.15 .82 .39      8.95 3.23 100 

20     20    25 20 11.72 11.07    13.85 9.22 .65 .38      8.35 3.12 80 

Table 5.4: Curved Surface Alignment Data 
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5.2    Medical Registration Experiments 

EMMA alignment of three dimensional objects relies on the fact that the image is a function 

of the model and the lighting. It is not necessary that we know the exact nature of this 

function. In medical imaging we are faced with a different though related task. We are given 

two different observations of the same object. For example we may be given a Computed 

Tomography (CT) scan and Magnetic Resonance Image (MRI) of the same patient. Two scans 

are often obtained because neither gives perfect information about the patient. CT is good 

at finding bone. MRI is good for distinguishing soft tissue. These measurements are taken at 

different times with different machines. A clinician that would like to have information about 

bone and soft tissue must integrate the two scans into a single self-consistent picture. Once 

this is done the spatial relationships between structures in the two different scans become 

apparent. For example the distance between a tumor and a bone can be measured. 

In Chapter 4 we argued that EMMA alignment should be able to align two signals 

whenever there is mutual information between them. In this experiment two different MR 

images of the same head will be aligned (see Figure 5.18). These images comprise the proton 

density and T2-weighted images of a double-echo MR. scan. We have chosen these two MR 

scans for two reasons: (1) it is clear that the two images share a great deal of information, 

while they are not identical; and (2) since they are taken simultaneously the correct align- 

ment should be close to the identity transformation. Because we know ground truth, we can 

evaluate the accuracy of the EMMA alignment procedure. 

A typical initial alignment appears in Figure 5.19. Notice that this image is a scaled, 

sheared, rotated and translated version of the original. The final alignment is displayed as 

a checkerboard. Here every other 20x20 pixel block is taken either from the model image or 

aligned target image. Notice that the boundary of the brain in the two images is in close 

agreement. 

We represent transformation space as a 6 element affine matrix that is used to project 

two dimensional points from the image into the model. This scheme can represent any 

combination of scaling, shearing, rotation and translation. The remaining algorithmic details 

are summarized in Table 5.5. 

In order to determine the reliability and precision of the alignment procedure, 50 random- 
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1. Define the model and image u() and v(): u() is the model image, 
v() is the target image.  
Sampling x: Sample the pixels of the model image uniformly. 
Transformation space T:   The space of affine transformations 
mapping pixels locations from the model into pixel locations in 

the image. 
Definition of dv(y)/dy: This is the intensity gradient. 
Distance metric: Euclidean distance. 
Variance, ip: Assuming diagonal covariance matrices, three dif- 
ferent variance are necessary: two for the joint entropy and one 
for the image entropy. The variances were 0.1 in all cases.  
Minimum probability, pmm: 0.01. 
Number of samples: One sample of 20 using cross-validation. 
Update rate, A: 0.02 for 500 steps and then 0.005 for 500 stepsT 9. 

Table 5.5: Summary of MRI alignment experiments. 

ized alignments were performed. The initial transformations were randomly selected, having 

a translation of up to 35 pixels (this is about one third of the width of the head), a rotation 

of up to 30 degrees, and a scaling of up to 20%. The correct alignment was obtained in 100% 

of the experiments. After alignment the affine transformations had an average translation 

error of 0.1 pixels. The remaining affine parameters represent a mixing of rotation, scale and 

shearing. They are somewhat more difficult to interpret. Given that the correct transform- 

ation is the identity matrix we can evaluate the final matrices by measuring the difference 

from the identity. On average the coefficients of the final transformation were in error by 

0.02. These experiments demonstrate that EMMA alignment is both precise and reliable. 

These two MRI images are fairly similar. Good alignment could probably have been 

obtained with a normalized correlation metric. Normalized correlation assumes, at least 

locally, that one signal is a scaled and offset version of the other. Our technique makes no 

such assumption. In fact, it will work across a wide variety of non-linear transformations. 

More difficult alignment problems are easily simulated. In Figure 5.20 we show the model 

image after a non-monotonic non-linear function has been applied. Recall that initially the 

image lies in the range [0,1]. We subtract 0.5, square the result, and renormalize to [0,1]. This 

operation is shown at the right of the figure. After applying this non-linear transformation 

the two images are anti-correlated; no variant of correlation can correctly align them. EMMA 
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Figure 5.18: MR Images 

alignment performance, however, is not effected. 

5.2.1    Three Dimensional MR/CT Alignment 

The medical alignment procedure described above can be extended to volumetric data. In the 

resulting system both the model and image are 3D arrays and a full three dimensional aligning 

transformation is estimated. Recently a number of three dimensional CT/MRI alignments 

have been performed. Because these results are preliminary, many of the experimental details 

are still in flux. Our description here will be necessarily brief. A more complete description 

can be found in (Wells III and Viola, 1995). 

The scans used were obtained from the same patient at different times4. Display of these 

three dimensional scans, and their alignment, is a difficult problem. Though the entire scan 

cannot be shown, some feeling for the data can obtained be displaying the three central 

slices. The central slices are perpendicular planes that pass trough the centroid of the data. 

Figure 5.21 shows the three central slices of the CT scan.   Figure 5.22 shows the initial 

4The images and the standard transformation(s) were provided as part of the project, "Evaluation of Ret- 
rospective Image Registration", National Institutes of Health, Project Number 1 ROI NS33926-01, Principal 
Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN. 
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Figure 5.19: Initial Pose and Display of Result 

alignment of the CT/MR pair as a checkerboard. When the signals involved are very different, 

the checkerboard representation can be somewhat confusing. Figure 5.23 shows the final 

alignment as the composition of the MR data with the intensity edges computed from the 

CT data. Notice the close agreement between the skull in both scans. 
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Figure 5.20: Transformed Model and the Transformation 

Figure 5.21: The three central slices of the CT data used in the MR-CT experiments. 
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Figure 5.22: An initial condition for MR-CT registration by maximization of mutual inform- 
ation displayed as a checkerboard composite of the three central slices. 

Figure 5.23: A final configuration for MR-CT registration by maximization of mutual inform- 
ation. The three central slices of the MRI data are shown with the edges from the registered 

CT data overlaid. 
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5.3    View Based Recognition Experiments 

In the previous vision experiments we used knowledge of the physics of imaging to show that 

the surface normal of an object should be predictive of the intensity observed in an image. 

Unfortunately, in many experimental situations no three dimensional model is available. In 

these situations it is frequently the case that the only available information about an object 

is a collection of images taken under a variety conditions. One approach for solving problems 

like this is to use a collection of images as the model. This is often called a "view based" 

approach since the model is made up of a number of views of the model object. Given a novel 

image of some object, each model image is compared to it in turn. If some model image is 

"close enough" to the novel image, the model and novel image are considered aligned (or 

recognized). One can significantly reduce the number of model images required by adding an 

affine transformation to the comparison process. The novel image is then compared to each 

model image under a set of affine transformations. The most commonly used comparison 

metric is correlation. As we saw in Section 4.1.1, correlation makes the assumption that the 

model and the image are identical (or possibly related by linear function). 

In general the set of images that can arise from a single object under varying illumination 

is very broad. Figure 5.24 shows two images of the same object in the same pose. These 

images are very different and are in fact anti-correlated: bright pixels in the left image 

correspond to dark pixels in the right image; dark pixels in the left image correspond to 

bright pixels in the right image. No variant of correlation could match these images together. 

We have presented techniques based on entropy that can match both correlated and anti- 

correlated signals. These techniques require only that there is some consistent relationship 

between model and image. Discouragingly, it is not difficult to find two images of the same 

object for which there is no consistent relationship. Figure 5.25 shows a novel image which 

is aligned with the two model images. Figure 5.26 contains two scatter plots of the pixel 

values in the novel image versus the pixel values in the model images. Clearly, there is no 

simple consistent relationship displayed in either of these graphs. EMMA could not be used 

to match this novel image to either model image. 
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Figure 5.24: Car Model Images 

Figure 5.25: A novel image of the car model. 

5.3.1    Photometric Stereo 

By itself each model image does not contain enough information to constrain the match 

between image and model. However, it is well known that taken together a collection of 

images can be used to determine the 3D shape of an object. As we've seen the 3D shape is 

sufficient to constrain the match between image and model. 

When multiple images of an object are available a technique called photometric stereo can 

be used to estimate its 3D shape (Horn, 1986). Photometric stereo works with images which 

are taken from the same location but under different illumination conditions. It is assumed 

that detailed information both about illumination and surface properties are available for 

each image. As a result a reflectance map can be computed for each image. The reflectance 

map determines the relationship between the normals of an object and the intensities in an 

image. 

The reflectance map together with the intensity of a pixel acts as a constraint on the 

normal vector visible from that pixel. The allowable normals usually lie along a closed curve 

on the unit circle. From a second image, and its associated reflectance map, another set 

of allowable normals can be computed. By intersecting these constraints, two images are 

sufficient to determine the surface normal at each pixel. From the normals the shape can be 

obtained through integration. 
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o I 
Model Image 1 

-1 0 1 
Model Image 2 

Figure 5.26: The relationship between pixels in the novel image and each of the model images. 

Once the shape of the object is determined, the correct alignment could be computed 

using the three dimensional version of EMMA. The imaging function of this new two stage 

process is: 

I(T(xi)) = F(G(Ul(xt),ru u2(x,),r2),q) 

where G() is the photometric stereo function that takes two images and two reflectance 

maps and returns the shape, and F{) is our original imaging function which predicts image 

intensities from object normals. 

In practice, however, performing photometric stereo requires the kind of detailed metric 

information about illumination that is only available under very controlled circumstances. 

One cannot use natural images where the lighting is unknown and difficult to determine. 

Luckily, we need not actually know G(), ru r2, F(), or q. As long as they exist there will be 

high mutual information between any novel image and a pair of model images. This is the 

essence of view based EMMA alignment. We don't actually perform photometric stereo, we 

simply assume that it is possible. As a result a pair of images should give information about 

any third image. 

To demonstrate this approach we have built a model using the two images in Figure 5.24. 

Figure 5.27 shows the target image, and the final pose obtained after alignment. Figure 5.28 

shows the initial pose of the model. 

Technically this experiment is very similar to the MRI alignment experiment. The main 

difference is that the model is constructed from a pair of model images. A sample of the 

model u(x) = [u1(x),u2(x)]T is a two dimensional vector containing the intensity of the two 

images at location x. This is similar to the two component representation of normal used in 
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Figure 5.27: Car Image and Final Pose 
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Figure 5.28: Initial Pose of Car Model 

the three dimensional alignment experiments. For this experiment a is 0.1. The parameters 

were updated for 1000 iterations at a rate of 0.002. From a set of randomized experiments 

we have determined that the capture range of the alignment procedure is about 40% of the 

length and width of the car, and 35 degrees of rotation. 

5.4    Limitations of EMMA Alignment 

Before we complete our discussion of EMMA alignment, several important caveats must 

be emphasized. EMMA alignment is not a recognition procedure. Though EMMA could 

well play a role in recognition there are two major missing components. The first missing 

component is an indexing scheme. EMMA alignment only works when the initial hypothetical 

pose is "close" to the true pose. A number of experiments have been performed in which an 

empirical estimate of "close" is determined (see Tables 5.3 and 5.4).  The capture range of 
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alignment is not large enough to expect that a randomly chosen transformation will converge 

to the true solution. As a result, some sort of additional procedure is required that can 

rapidly propose possible poses. Such a procedure is typically called an "indexing" scheme. 

The second missing component is the recognition process itself. Recognition requires that 

a decision be made about whether the model object is really present in the image. Object 

recognition is very similar in concept to the problem of pattern classification (Duda and Hart, 

1973; Fukunaga, 1990). Pattern classification is a process by which a novel input pattern is 

classified as an example of a class. The task is difficult when the structure of the class is 

complex and under-specified. For example, determining which stocks are a good investment 

is a classification task that even the most complex classifiers, human investors, have difficulty 

performing. 

Pattern classification can be formulated as a maximum likelihood or maximum a posteriori 

problem. Given a novel pattern, the likelihood of each possible class is evaluated in turn. If 

one class is much more likely then any other, then that class is considered the correct class. 

Object recognition is a similar process. Given a novel image, the likelihood of each object 

model is evaluated. In order that there be confidence in the classification, it is particularly 

important that the most likely model be more likely than the null hypothesis: that the image 

does not contain any model. The likelihood of the null hypothesis is proportional to the 

unconditioned likelihood of an image. 

As we have seen, log likelihood is closely related to entropy. As a result, EMMA can 

be used to define a classification procedure: the mutual information between each model 

and the novel image is evaluated; the model selected is the one that provides the most 

information about the image. What is missing is a reliable measure of the unconditioned 

entropy of an image (i.e. the information that the null hypothesis gives us about the image). 

The assumption that the pixels are independent underlies the EMMA estimate of image 

entropy. Though it leads to inaccuracy, the independence assumption has proven sufficient 

for alignment. This is primarily because alignment is a relative procedure. The model is 

adjusted so that the image is best explained. Recognition, because it is an absolute procedure, 

is not so forgiving. A more accurate estimate of image entropy will be required before EMMA 

can be used for object recognition. 
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Chapter 6 

Other Applications of EMMA 

The theory and algorithms presented in this thesis are quite general and can in principle 

be applied to a variety of problems. This chapter is devoted to a description of two such 

problems and their solutions. In the first part of the chapter we will show how EMMA can 

be used to correct images that have been have been "corrupted" by a slowly varying bias 

field. Examples include: MRI corruption that arises from non-uniformity in magnetic field, 

and lightness correction in visual images. The second part of the chapter is devoted to an 

application of stochastic gradient descent outside of entropy manipulation. Jones and Poggio 

have presented a system that aligns line drawings of faces with novel line drawings (Jones 

and Poggio, 1995). Their published work uses a complex second order gradient descent 

technique known as Levenberg-Marquardt. We will show that similar if not better results 

can be obtained with stochastic gradient descent. The resulting algorithm operates roughly 

30 times as fast as the original. 

6.1    Bias Compensation 

A magnetic resonance image (MRI) is a 2 or 3 dimensional image that records the density 

of tissues inside the body. In the head, as in other parts of the body, there are a number 

of distinct tissue classes including: bone, water, white matter, grey matter, and fat. In 

principle the distribution of pixel values in an MRI scan should be clustered, with one 
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cluster for each tissue class. In reality MRI signals are corrupted by a bias field, an additive 

or multiplicative offset that varies slowly in space. The bias field results from unavoidable 

variations in magnetic field (see (Wells III et al., 1994) for an overview of this problem). The 

bias field makes constructing automatic tissue classifiers difficult. 

Wells et al. have built a system for bias correction around the assumption that an un- 

corrupted MRI scan will have a particular distribution of pixel values. This distribution 

will have a peak for each type of tissue. Using an explicit physical model of MRI image 

formation they construct a prior model for this distribution as a mixture of Gaussians, with 

one Gaussian for each tissue type. The model can then be used to compute the likelihood of 

an MRI. Corrupted MRI's will be unlikely because the bias field blurs together the clusters. 

Wells et al. use maximum likelihood to select the correction field (the inverse of the bias 

field) that makes a corrupted MRI most likely. 

To reiterate, their system finds an estimated correction field that when applied to the data 

makes it look like a particular type of clustered multi-class data. Applying the correction field 

sharpens up the classes and makes automatic classification easy. As in the learning problems 

encountered in previous chapters, some assumption about the nature of the correction field 

is necessary to condition the problem. If we have prior knowledge that the bias field varies 

slowly across space, the correction field should also vary slowly. Wells et al. assume that the 

bias field is smooth. To encourage smoothness they introduce a probabilistic prior in which 

smooth fields are more likely than non-smooth ones. 

The main disadvantage of their MRI correction system is that it requires a fairly accurate 

model of the tissue distribution. These models can be difficult to construct. Furthermore, 

since the model includes estimates for the relative proportions of the tissue types, a different 

model is required for each region of the body. 

Using entropy we can proceed in a much less model-based way. Since Wells et al.'s 

technique has proven to be quite effective, we can safely assume that the pixel values of an 

uncorrupted MRI image are clustered into distinct classes. Such a distribution should have 

low entropy. Corruption from the bias field blurs together the clusters. The bias field acts 

like noise, adding entropy to the pixel distribution. This insight is the central idea behind 

our approach. We attempt to find the low-frequency correction field that when applied to 

the image, makes the pixel distribution have a lower entropy. The resulting "bias corrected" 

image will have a tighter clustering than the original distribution. 
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Insuring the smoothness of the correction field can be tricky. Wells et al. estimate a dense 

correction field, with one estimate for every pixel in the MRI. They insure smoothness by 

periodically, at every iteration, smoothing the correction field estimates. Another approach 

would be to represent the bias field as smooth in the first place. This can be done paramet- 

rically by representing the correction field as a smooth parameterized function. Or it can 

be done using a low-frequency correction image, with say 1 pixel for every 10 in the image. 

Another approach, one which is guaranteed to be better when it is possible, is to represent 

the correction field with an explicit physical model. In the case of MRI, physics can be used 

to show that the bias field should be a low order polynomial of location (M. Tincher and Wil- 

liams, 1993). We take this approach for correcting MRI scans, representing the correction 

field as a third degree polynomial in the x and y coordinates of the scan. 

The code that minimizes the entropy of the MRI is very similar to the other entropy 

manipulation applications we have described. Once again we sample points from the image, 

x, where each point now has a value, v(x), and a current estimate for the bias field, b(x). 

Proceeding as we have before, we approximate the entropy of the bias compensated image, 

c(x) = v(x) - b(x) (see Equation (3.22)). The bias field is adjusted to minimize h*(c(x)) by 

taking steps in the direction of the derivative as approximated in Equation 3.24. In this case 

the parameters over which we are minimizing entropy are the coefficients of the bias field 

polynomial. The derivatives of the bias field, since they are polynomial, are easy to compute. 

The first experiment is identical to a synthetic experiment proposed by Wells et al. A 

binary checkerboard is used as a prototypical example of a two class image. Half of the 

pixels belong to the black class, the other half to the white class. The pixel entropy of a 

checkerboard is very low. The checkerboard is then corrupted by a large unknown bias field 

(see Figures 6.1 and 6.2). The corruption is so large that any cluster structure in the data 

has disappeared. This is apparent both from the distribution of pixels and a thresholding of 

the corrupted image (see Figures 6.3 and 6.2). Entropy minimization comes very close to 

exactly compensating for the bias field. Figure 6.2 shows the corrected image. Its distribution 

is also shown in Figure 6.3. The image is not perfectly corrected because we use a different 

bias field representation than Wells et al. 

One of the goals of the work by Wells et al. is to correctly classify white versus grey matter 

in the brain (see (Bezdek et al., 1993) for a comprehensive overview of MRI segmentation). 

They show that classification is much easier if the bias field of a scan is known beforehand. 
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I 
Figure 6.1: The original checkerboard image and the bias field that corrupts it. 

Jfiflt 

Figure 6.2: Left: the corrupted checkerboard. Center: a thresholded version of the corrupted 
image. Right: the corrected checkerboard. 

We have performed a number of experiments where EMMA is used to find the correction 

field. While Wells et al.'s system is designed to give a tissue classification for the corrected 

scan, EMMA based correction does not provide a classification. Instead we will examine the 

distribution of the corrected scan and attempt to determine if the scan has been corrected 

in a way that would make classification of white and grey matter easier. Figure 6.4 shows a 

slice of MRI data taken from a brain. Figure 6.5 shows the histogram of the scan before and 

after correction. In the histogram of the original scan white and grey matter tissue classes are 

confounded into a single peak ranging from about 0.4 to 0.7. The histogram of the corrected 

scan shows much better separation between these two classes. We can highlight the pixels 

in this distribution by mapping all the pixels below the first peak to black, all the pixels 

above the second peak to white, and linearly scaling between (white matter appears darker 

than grey matter in this MRI scan). Figure 6.6 shows the original and corrected scans in this 

manner. Notice that the inhomogeneity in the original image becomes immediately apparent. 

The lower left hand portion of the original scan is dark. Since the corrected scan does not 

show this inhomogeneity, the white and grey matter of the corrected scan are distinct. 
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Figure 6.3: The pixel density of the corrupted checkerboard and the compensated checker- 

board. 

Figure 6.4: A slice from an MRI scan of a head. 

A Second Experiment 

The procedure for bias field correction has been repeated for a number of different scans. 

Figures 6.7, 6.8 and 6.9 show the results of an experiment performed on a coronal slice of an 

MRI scan. 
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Figure 6.5: The distribution of pixel value in the MRI scan before and after correction. 

Experimental Details 

All of the experiments use a smoothing function variance of 0.01. The learning rate was 

-0.003. The sample size was 30. Every run was concluded after 8000 parameter updates. 

The pmin value was 0.01. 

The checkerboard image is 256 by 256 pixels. The checkerboard experiment uses a bias 

held which is a 20 by 20 pixel low resolution image. This 20 by 20 image is then bilinearly 

interpolated to create a continuous bias offset for each pixel in the checkerboard. The 400 

parameters in this bias held are the most ever simultaneously approximated by an EMMA 

based technique. 

The MRI scans varied in size from 100 square to 256 square. The bias held for the MRI 

experiments was a 3rd order polynomial in x and y location. 

6.2    Alignment of Line Drawings 

Jones and Poggio have constructed a system that automatically analyzes hand drawn faces 

(Jones and Poggio, 1995). Their system can estimate the emotional content of these faces (i.e. 

it can determine that you have drawn a very happy face that is somewhat surprised). Their 
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Figure 6.6: At left is the MRI scan shown with a modified intensity scale. The inhomogeneity 
is not much more apparent. In the center is the correct scan shown using the same intensity 

scale. At right is the estimated correction field. 

Figure 6.7: A coronal slice from an MRI scan of a head. 

system works by constructing a non-rigid transformation that maps a novel drawing onto a 

hand drawn "neutral" face (see figure Figure 6.10). The shape of the non-rigid transformation 

determines the emotion of the face. 

Jones and Poggio use a representation for non-rigid transformations that is called flow. A 

flow is an image of displacement vectors. They search for a flow that minimizes the difference 

between the base image b(x) and the novel image n(x), 

W) = £(n(s)-&(*+ /(*)))' (6.1; 

where / is the flow image and the summation is over all of the pixels in the novel image. The 

problem of non-rigidly transforming one image into another has been very heavily studied in 

computer vision. In most previous work flow is represented directly as an image of displace- 
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Figure 6.8: The distribution of pixel value in the MRI scan before and after correction. Solid 
line is the original distribution. The dashed line is the corrected distribution. 

Figure 6.9: The same scan but with a modified intensity scale. Points above the intensity for 
grey matter appear white. Points below the intensity for white matter appear black. There 
is a linear scale between. Notice that the lower part of the image is darker in the unconnected 
image. On the right is the estimated bias. 

ment vectors. The search problem is then conditioned with the addition of a smoothness prior 

over flow images. Jones and Poggio decompose flow into a. linear combination of component 

flows, 

C(Wi}) = £ («(*) -K* + E°iMx))\ (6.2) 

The search for flow then becomes an unconstrained optimization over the parameters a,-. 

Each component flow represents a different type of emotion. For example, one kind of 

flow might transform a neutral face into a smiling face. Another might make a face look 

more surprised. These flows can be mixed together to produce images that have combination 
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Figure 6.10: The first face is the "neutral" face. The others are "frown", "narrow eyes", 

"surprise", "eyebrows", and "smile". 

of properties. Given a novel image, a set of a;'s are determined that provide for the closest 

match with the neutral face. These QJ'S determine to what extent the face is smiling or 

frowning. Figure 6.11 shows several novel images and the best reconstruction obtained by 

transforming the neutral face. 

In their paper Jones and Poggio use Levenberg-Marquardt, a second order gradient des- 

cent procedure, to determine the flow parameters (see (William H. Press and Veterling, 1992) 

for an excellent discussion optimization techniques). Together we have replaced this tech- 

nique with a much simpler stochastic gradient descent procedure. Over the course of many 

experiments stochastic alignment has improved running times from 60 seconds to 2 seconds. 

The quality of the minima found with stochastic gradient descent is equivalent to, if not 

better, than Levenberg-Marquardt. Moreover, stochastic gradient descent rarely if ever gets 

stuck in local minima. There were a number of cases where Levenberg-Marquardt converges 

far from the the best solution. On these same problems, stochastic gradient descent almost 

always finds a good solution. 
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Figure 6.11: A series of novel faces with the best reconstruction displayed below. 
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Chapter 7 

Conclusion 

Maximization of mutual information appears to be a new and powerful means of performing 

local alignment of objects and images. In a typical vision application it is an intensity-based, 

rather than feature based method. While intensity based, it is more robust than traditional 

correlation, as shown by the insensitivity to lighting demonstrated in the experiment of 

Section 5.1.3. In addition, the method is insensitive to negating the image data, as well 

as a variety of non-linear transformations, which would defeat conventional intensity-based 

correlation. 

The weaknesses of intensity correlation may be corrected, to some extent, by performing 

correlations on the magnitude of the brightness gradient, This, as well as edge-based matching 

techniques, can perform well on objects having discontinuous surface properties, or useful 

silhouettes. These approaches work because the image counterparts of these discontinuities 

are reasonably stable with respect to illumination. 

Gradient magnitude correlation, as well as edge-based methods can have serious diffi- 

culties in domains lacking discontinuities, such as the example shown in Section 5.1.3, be- 

cause neither edges, nor their precursor, gradient magnitude, are stable in image position 

with respect to lighting changes (see Figure 5.16). While our technique works well using 

only shading, it also works well in domains having surface property discontinuities and sil- 

houette information (see Section 5.1.1). 
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7.1    Related Work 

Alignment by extremizing properties of the joint signal has been used by Hill and Hawkes 

(Hill et al., 1994) to align MRI, CT, and other medical image modalities. They use third order 

moments to characterize the clustering of the joint data. We believe that mutual information 

is perhaps a more direct measure of the salient property of the joint data at alignment, and 

demonstrate an efficient means of estimating and extremizing it. 

There are many schemes that represent models and images by collections of edges and 

define a distance metric between them that is proportional to the number of edges that coincide 

(see the excellent survey articles: (Besl and Jain, 1985; Chin and Dyer, 1986)). A smooth, 

optimizable version of this metric can be defined by introducing a penalty both for unmatched 

edges and for the distance between those that are matched (Lowe, 1985; Wells III, 1992b; 

Huttenlocher et al., 1991). This metric can then be used both for image/model comparison 

and for pose refinement. Edge based metrics can work under a variety of different lighting 

conditions, but they make two very strong assumptions: the edges that arise are stable under 

changes in lighting, and the models are well described as a collection of edges. Clearly 

smoothly curved objects are a real problem for these techniques. As we alluded before, Wells 

has performed a number of experiments where he attempts to match edges that are extracted 

under varying lighting. In general for even moderately curved objects, the number of unstable 

and therefore unreliable edges is problematic. Faces, cars, fruit and a myriad of other objects 

have proven to be very difficult to model using edges. 

Others use more direct techniques to build models. Generally these approaches revolve 

around the use of the image itself as an object model. Objects need not have edges to be well 

represented in this way, but care must be taken to deal with changes in lighting and pose. 

Turk and Pentland have used a large collection of face images to train a system to construct 

representations that are invariant to some changes in lighting and pose (Turk and Pentland, 

1991). These representations are a projection onto the largest eigenvectors of the distribution 

of images within the collection. Their system addresses the problem of recognition rather 

than alignment, and as a result much of the emphasis and many of the results are different. 

For instance, it is not clear how much variation in pose can be handled by their system. 

We do not see a straightforward extension of this or similar eigenspace work to the problem 

of pose refinement. On a related note Shashua has shown that all of the images, under 

different lighting, of a Lambertian surface are a linear combination of any three of the images 
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(Shashua, 1992).  This also bears a clear relation to the work of Turk and Pentland in that 

the eigenvectors of a set of images of an object should span this three dimensional space. 

Entropy is playing an ever increasing role within the field of neural networks. We know 

of no work on the alignment of models and images, but there has been work using entropy 

and information in vision problems. None of these techniques uses a non-parametric scheme 

for density/entropy estimation as we do. In most cases the distributions are assumed to be 

either binomial or Gaussian. This both simplifies and limits such approaches. 

Linsker has used the concept of information maximization to motivate a theory of de- 

velopment in the primary visual cortex (Linsker, 1986). He has been able to predict the 

development of receptive fields that are very reminiscent of the ones found in the primate 

visual cortex. He uses a Gaussian model both for the signal and the noise. 

Becker and Hinton have used the maximization of mutual information as a framework for 

learning different low-level processing algorithms such as disparity estimation and curvature 

estimation (Becker and Hinton, 1992). They assume that the signals whose mutual informa.- 

tion is to be maximized are Gaussian. In addition, they assume that the only joint information 

between images is the information that they wish to extract (i.e. they train their disparity 

detectors on random dot stereograms). 

Finally, Bell has used a measure of information to separate signals that ha.ve been linearly 

mixed together (Bell and Sejnowski, 1995). His technique assumes that the different mixed 

signals carry little mutual information. While he does not assume that the distribution has 

a particular functional form, he does assume that the distribution is well matched to a pre- 

selected transfer function. For example, a Gaussian is well matched to the logistic function 

because applying a correctly positioned and scaled logistic function results in a uniform 

distribution. 

7.2    A Parallel with Geometrical Alignment 

EMMA bears some similarity to methods used for evaluating and adjusting geometrical align- 

ment. These similarities may be seen by revisiting the entropy derivative of Equation 3.28, 

and comparing it to the derivative of the following construct. 
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We define V, half the averaged Mahalonobis distance between values in B and their 

nearest correspondences in A, 

P(T) = -^ £ min ^(* - *,-)   . (7.1) 

Locally (away from discontinuities), the derivative of the above expression is 

Comparing the above expression with Equation 3.28, we see the following analogy. If the 

transformation T is adjusted to reduce the averaged squared "differences" between points in 

B and their counterparts from A that are nearest in signal value, then a reduction in entropy 

is obtained. This is intuitive, in that entropy will be lower if clusters in "signal value" are 

tighter so that nearby signal differences will be smaller. The approximation of this analogy 

is due to the dissimilarity between max and softmax. 

Equation 7.1 is essentially the measure used in chamfer matching techniques, such as the 

method described by Borgefors (Borgefors, 1988). Huttenlocher (Huttenlocher et al., 1991) 

has used a related measure in feature matching applications, the Hausdorff distance, which 

uses maximum instead of the sum that appears in Equation 7.1. The similarity between 

geometrical matching and entropy becomes even stronger if one uses the softmax operation 

to weight the closest element rather than simply selecting the closest, as Wells has (Wells III, 

1992b; Wells III, 1992a). 

We reiterate that in vision applications, these methods have typically been used to measure 

aggregate geometrical distance, while here we are measuring aggregate distances among signal 

values (typically intensities, brightnesses, or surface properties). 
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Appendix 

A.l    Gradient Descent 

In a number problems described in this thesis one must find a set of parameters that extrem- 

izes an evaluation function. Examples include: (1) finding the parameters of density so that 

the likelihood of sample is maximized; (2) finding the pose parameters that align a model 

and an image best; and (3) finding the weights of a neural network so that it approximates 

a function best. In each case there is a function of a parameters set F(p), whose value is 

to be either maximized or minimized. The parameters are continuous variables, and we are 

therefore faced with an infinite number of possible solutions. The gradient descent procedure 

is an effective though greedy technique for searching such a space. 

There are many closely related gradient descent algorithms. Here we will describe the 

simplest: steepest descent or hill climbing. Starting from an initial guess for the parameters, 

steepest descent is an iterative procedure that uses the partial derivatives of a function to 

construct an improved estimate for its parameters. Each parameter is updated by 

dF(p) 

The update rate A (which is also known as the learning rate) must be chosen carefully. When 
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A is sufficiently small one can use a Taylor expansion of F() to prove that 

When A is too small p might take arbitrarily long to approach a maximum. If A is chosen 

correctly p will converge toward the maximum relatively rapidly. 

There are many gradient based techniques that attempt to speed the rate of convergence of 

p. Second order techniques such as Levenberg-Marquart and Newton-Raphson use the second 

derivatives of F(p) to re-estimate A. Conjugate gradient techniques attempt to find better 

directions than the gradient of F(). In every case one must be careful that the theoretical 

advantages of the algorithm are not outweighed by the costs of computing it. Researchers 

in neural networks have found that for many problems it is difficult to realize any actual 

improvement in convergence speed. The problems for which steepest descent works as well 

as more complex techniques include functions where there are a large number of parameters— 

this makes computing the second derivatives quite expensive. 
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